Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from copy import copy | |
from ultralytics.models import yolo | |
from ultralytics.nn.tasks import SegmentationModel | |
from ultralytics.utils import DEFAULT_CFG, RANK | |
from ultralytics.utils.plotting import plot_images, plot_results | |
class SegmentationTrainer(yolo.detect.DetectionTrainer): | |
""" | |
A class extending the DetectionTrainer class for training based on a segmentation model. | |
Example: | |
```python | |
from ultralytics.models.yolo.segment import SegmentationTrainer | |
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml', epochs=3) | |
trainer = SegmentationTrainer(overrides=args) | |
trainer.train() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initialize a SegmentationTrainer object with given arguments.""" | |
if overrides is None: | |
overrides = {} | |
overrides["task"] = "segment" | |
super().__init__(cfg, overrides, _callbacks) | |
def get_model(self, cfg=None, weights=None, verbose=True): | |
"""Return SegmentationModel initialized with specified config and weights.""" | |
model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1) | |
if weights: | |
model.load(weights) | |
return model | |
def get_validator(self): | |
"""Return an instance of SegmentationValidator for validation of YOLO model.""" | |
self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss" | |
return yolo.segment.SegmentationValidator( | |
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks | |
) | |
def plot_training_samples(self, batch, ni): | |
"""Creates a plot of training sample images with labels and box coordinates.""" | |
plot_images( | |
batch["img"], | |
batch["batch_idx"], | |
batch["cls"].squeeze(-1), | |
batch["bboxes"], | |
masks=batch["masks"], | |
paths=batch["im_file"], | |
fname=self.save_dir / f"train_batch{ni}.jpg", | |
on_plot=self.on_plot, | |
) | |
def plot_metrics(self): | |
"""Plots training/val metrics.""" | |
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png | |