Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from ultralytics.engine.results import Results | |
from ultralytics.models.yolo.detect.predict import DetectionPredictor | |
from ultralytics.utils import DEFAULT_CFG, ops | |
class SegmentationPredictor(DetectionPredictor): | |
""" | |
A class extending the DetectionPredictor class for prediction based on a segmentation model. | |
Example: | |
```python | |
from ultralytics.utils import ASSETS | |
from ultralytics.models.yolo.segment import SegmentationPredictor | |
args = dict(model='yolov8n-seg.pt', source=ASSETS) | |
predictor = SegmentationPredictor(overrides=args) | |
predictor.predict_cli() | |
``` | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
"""Initializes the SegmentationPredictor with the provided configuration, overrides, and callbacks.""" | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.task = "segment" | |
def postprocess(self, preds, img, orig_imgs): | |
"""Applies non-max suppression and processes detections for each image in an input batch.""" | |
p = ops.non_max_suppression( | |
preds[0], | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
nc=len(self.model.names), | |
classes=self.args.classes, | |
) | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
proto = preds[1][-1] if isinstance(preds[1], tuple) else preds[1] # tuple if PyTorch model or array if exported | |
for i, pred in enumerate(p): | |
orig_img = orig_imgs[i] | |
img_path = self.batch[0][i] | |
if not len(pred): # save empty boxes | |
masks = None | |
elif self.args.retina_masks: | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC | |
else: | |
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks)) | |
return results | |