xiaoming32236046's picture
Upload 325 files
53ad959 verified
raw
history blame
8.5 kB
# Ultralytics YOLO πŸš€, AGPL-3.0 license
from pathlib import Path
import torch
from ultralytics.models.yolo.detect import DetectionValidator
from ultralytics.utils import LOGGER, ops
from ultralytics.utils.metrics import OBBMetrics, batch_probiou
from ultralytics.utils.plotting import output_to_rotated_target, plot_images
class OBBValidator(DetectionValidator):
"""
A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model.
Example:
```python
from ultralytics.models.yolo.obb import OBBValidator
args = dict(model='yolov8n-obb.pt', data='dota8.yaml')
validator = OBBValidator(args=args)
validator(model=args['model'])
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics."""
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
self.args.task = "obb"
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot)
def init_metrics(self, model):
"""Initialize evaluation metrics for YOLO."""
super().init_metrics(model)
val = self.data.get(self.args.split, "") # validation path
self.is_dota = isinstance(val, str) and "DOTA" in val # is COCO
def postprocess(self, preds):
"""Apply Non-maximum suppression to prediction outputs."""
return ops.non_max_suppression(
preds,
self.args.conf,
self.args.iou,
labels=self.lb,
nc=self.nc,
multi_label=True,
agnostic=self.args.single_cls,
max_det=self.args.max_det,
rotated=True,
)
def _process_batch(self, detections, gt_bboxes, gt_cls):
"""
Return correct prediction matrix.
Args:
detections (torch.Tensor): Tensor of shape [N, 7] representing detections.
Each detection is of the format: x1, y1, x2, y2, conf, class, angle.
gt_bboxes (torch.Tensor): Tensor of shape [M, 5] representing rotated boxes.
Each box is of the format: x1, y1, x2, y2, angle.
labels (torch.Tensor): Tensor of shape [M] representing labels.
Returns:
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
"""
iou = batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
return self.match_predictions(detections[:, 5], gt_cls, iou)
def _prepare_batch(self, si, batch):
"""Prepares and returns a batch for OBB validation."""
idx = batch["batch_idx"] == si
cls = batch["cls"][idx].squeeze(-1)
bbox = batch["bboxes"][idx]
ori_shape = batch["ori_shape"][si]
imgsz = batch["img"].shape[2:]
ratio_pad = batch["ratio_pad"][si]
if len(cls):
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
def _prepare_pred(self, pred, pbatch):
"""Prepares and returns a batch for OBB validation with scaled and padded bounding boxes."""
predn = pred.clone()
ops.scale_boxes(
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], xywh=True
) # native-space pred
return predn
def plot_predictions(self, batch, preds, ni):
"""Plots predicted bounding boxes on input images and saves the result."""
plot_images(
batch["img"],
*output_to_rotated_target(preds, max_det=self.args.max_det),
paths=batch["im_file"],
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
names=self.names,
on_plot=self.on_plot,
) # pred
def pred_to_json(self, predn, filename):
"""Serialize YOLO predictions to COCO json format."""
stem = Path(filename).stem
image_id = int(stem) if stem.isnumeric() else stem
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())):
self.jdict.append(
{
"image_id": image_id,
"category_id": self.class_map[int(predn[i, 5].item())],
"score": round(predn[i, 4].item(), 5),
"rbox": [round(x, 3) for x in r],
"poly": [round(x, 3) for x in b],
}
)
def save_one_txt(self, predn, save_conf, shape, file):
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
gn = torch.tensor(shape)[[1, 0]] # normalization gain whwh
for *xywh, conf, cls, angle in predn.tolist():
xywha = torch.tensor([*xywh, angle]).view(1, 5)
xyxyxyxy = (ops.xywhr2xyxyxyxy(xywha) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xyxyxyxy, conf) if save_conf else (cls, *xyxyxyxy) # label format
with open(file, "a") as f:
f.write(("%g " * len(line)).rstrip() % line + "\n")
def eval_json(self, stats):
"""Evaluates YOLO output in JSON format and returns performance statistics."""
if self.args.save_json and self.is_dota and len(self.jdict):
import json
import re
from collections import defaultdict
pred_json = self.save_dir / "predictions.json" # predictions
pred_txt = self.save_dir / "predictions_txt" # predictions
pred_txt.mkdir(parents=True, exist_ok=True)
data = json.load(open(pred_json))
# Save split results
LOGGER.info(f"Saving predictions with DOTA format to {pred_txt}...")
for d in data:
image_id = d["image_id"]
score = d["score"]
classname = self.names[d["category_id"]].replace(" ", "-")
p = d["poly"]
with open(f'{pred_txt / f"Task1_{classname}"}.txt', "a") as f:
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
# Save merged results, this could result slightly lower map than using official merging script,
# because of the probiou calculation.
pred_merged_txt = self.save_dir / "predictions_merged_txt" # predictions
pred_merged_txt.mkdir(parents=True, exist_ok=True)
merged_results = defaultdict(list)
LOGGER.info(f"Saving merged predictions with DOTA format to {pred_merged_txt}...")
for d in data:
image_id = d["image_id"].split("__")[0]
pattern = re.compile(r"\d+___\d+")
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___"))
bbox, score, cls = d["rbox"], d["score"], d["category_id"]
bbox[0] += x
bbox[1] += y
bbox.extend([score, cls])
merged_results[image_id].append(bbox)
for image_id, bbox in merged_results.items():
bbox = torch.tensor(bbox)
max_wh = torch.max(bbox[:, :2]).item() * 2
c = bbox[:, 6:7] * max_wh # classes
scores = bbox[:, 5] # scores
b = bbox[:, :5].clone()
b[:, :2] += c
# 0.3 could get results close to the ones from official merging script, even slightly better.
i = ops.nms_rotated(b, scores, 0.3)
bbox = bbox[i]
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
classname = self.names[int(x[-1])].replace(" ", "-")
p = [round(i, 3) for i in x[:-2]] # poly
score = round(x[-2], 3)
with open(f'{pred_merged_txt / f"Task1_{classname}"}.txt', "a") as f:
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
return stats