Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from ultralytics.engine.predictor import BasePredictor | |
from ultralytics.engine.results import Results | |
from ultralytics.utils import ops | |
class DetectionPredictor(BasePredictor): | |
""" | |
A class extending the BasePredictor class for prediction based on a detection model. | |
Example: | |
```python | |
from ultralytics.utils import ASSETS | |
from ultralytics.models.yolo.detect import DetectionPredictor | |
args = dict(model='yolov8n.pt', source=ASSETS) | |
predictor = DetectionPredictor(overrides=args) | |
predictor.predict_cli() | |
``` | |
""" | |
def postprocess(self, preds, img, orig_imgs): | |
"""Post-processes predictions and returns a list of Results objects.""" | |
preds = ops.non_max_suppression( | |
preds, | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
classes=self.args.classes, | |
) | |
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list | |
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) | |
img_path = self.batch[0][i] | |
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred)) | |
return results | |