Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import torch | |
from ultralytics.data import ClassificationDataset, build_dataloader | |
from ultralytics.engine.validator import BaseValidator | |
from ultralytics.utils import LOGGER | |
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix | |
from ultralytics.utils.plotting import plot_images | |
class ClassificationValidator(BaseValidator): | |
""" | |
A class extending the BaseValidator class for validation based on a classification model. | |
Notes: | |
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. | |
Example: | |
```python | |
from ultralytics.models.yolo.classify import ClassificationValidator | |
args = dict(model='yolov8n-cls.pt', data='imagenet10') | |
validator = ClassificationValidator(args=args) | |
validator() | |
``` | |
""" | |
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None): | |
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar.""" | |
super().__init__(dataloader, save_dir, pbar, args, _callbacks) | |
self.targets = None | |
self.pred = None | |
self.args.task = "classify" | |
self.metrics = ClassifyMetrics() | |
def get_desc(self): | |
"""Returns a formatted string summarizing classification metrics.""" | |
return ("%22s" + "%11s" * 2) % ("classes", "top1_acc", "top5_acc") | |
def init_metrics(self, model): | |
"""Initialize confusion matrix, class names, and top-1 and top-5 accuracy.""" | |
self.names = model.names | |
self.nc = len(model.names) | |
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf, task="classify") | |
self.pred = [] | |
self.targets = [] | |
def preprocess(self, batch): | |
"""Preprocesses input batch and returns it.""" | |
batch["img"] = batch["img"].to(self.device, non_blocking=True) | |
batch["img"] = batch["img"].half() if self.args.half else batch["img"].float() | |
batch["cls"] = batch["cls"].to(self.device) | |
return batch | |
def update_metrics(self, preds, batch): | |
"""Updates running metrics with model predictions and batch targets.""" | |
n5 = min(len(self.names), 5) | |
self.pred.append(preds.argsort(1, descending=True)[:, :n5]) | |
self.targets.append(batch["cls"]) | |
def finalize_metrics(self, *args, **kwargs): | |
"""Finalizes metrics of the model such as confusion_matrix and speed.""" | |
self.confusion_matrix.process_cls_preds(self.pred, self.targets) | |
if self.args.plots: | |
for normalize in True, False: | |
self.confusion_matrix.plot( | |
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot | |
) | |
self.metrics.speed = self.speed | |
self.metrics.confusion_matrix = self.confusion_matrix | |
self.metrics.save_dir = self.save_dir | |
def get_stats(self): | |
"""Returns a dictionary of metrics obtained by processing targets and predictions.""" | |
self.metrics.process(self.targets, self.pred) | |
return self.metrics.results_dict | |
def build_dataset(self, img_path): | |
"""Creates and returns a ClassificationDataset instance using given image path and preprocessing parameters.""" | |
return ClassificationDataset(root=img_path, args=self.args, augment=False, prefix=self.args.split) | |
def get_dataloader(self, dataset_path, batch_size): | |
"""Builds and returns a data loader for classification tasks with given parameters.""" | |
dataset = self.build_dataset(dataset_path) | |
return build_dataloader(dataset, batch_size, self.args.workers, rank=-1) | |
def print_results(self): | |
"""Prints evaluation metrics for YOLO object detection model.""" | |
pf = "%22s" + "%11.3g" * len(self.metrics.keys) # print format | |
LOGGER.info(pf % ("all", self.metrics.top1, self.metrics.top5)) | |
def plot_val_samples(self, batch, ni): | |
"""Plot validation image samples.""" | |
plot_images( | |
images=batch["img"], | |
batch_idx=torch.arange(len(batch["img"])), | |
cls=batch["cls"].view(-1), # warning: use .view(), not .squeeze() for Classify models | |
fname=self.save_dir / f"val_batch{ni}_labels.jpg", | |
names=self.names, | |
on_plot=self.on_plot, | |
) | |
def plot_predictions(self, batch, preds, ni): | |
"""Plots predicted bounding boxes on input images and saves the result.""" | |
plot_images( | |
batch["img"], | |
batch_idx=torch.arange(len(batch["img"])), | |
cls=torch.argmax(preds, dim=1), | |
fname=self.save_dir / f"val_batch{ni}_pred.jpg", | |
names=self.names, | |
on_plot=self.on_plot, | |
) # pred | |