Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from typing import Any, Optional, Tuple, Type | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ultralytics.nn.modules import LayerNorm2d, MLPBlock | |
class ImageEncoderViT(nn.Module): | |
""" | |
An image encoder using Vision Transformer (ViT) architecture for encoding an image into a compact latent space. The | |
encoder takes an image, splits it into patches, and processes these patches through a series of transformer blocks. | |
The encoded patches are then processed through a neck to generate the final encoded representation. | |
This class and its supporting functions below lightly adapted from the ViTDet backbone available at | |
https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py. | |
Attributes: | |
img_size (int): Dimension of input images, assumed to be square. | |
patch_embed (PatchEmbed): Module for patch embedding. | |
pos_embed (nn.Parameter, optional): Absolute positional embedding for patches. | |
blocks (nn.ModuleList): List of transformer blocks for processing patch embeddings. | |
neck (nn.Sequential): Neck module to further process the output. | |
""" | |
def __init__( | |
self, | |
img_size: int = 1024, | |
patch_size: int = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
depth: int = 12, | |
num_heads: int = 12, | |
mlp_ratio: float = 4.0, | |
out_chans: int = 256, | |
qkv_bias: bool = True, | |
norm_layer: Type[nn.Module] = nn.LayerNorm, | |
act_layer: Type[nn.Module] = nn.GELU, | |
use_abs_pos: bool = True, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
window_size: int = 0, | |
global_attn_indexes: Tuple[int, ...] = (), | |
) -> None: | |
""" | |
Args: | |
img_size (int): Input image size. | |
patch_size (int): Patch size. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
depth (int): Depth of ViT. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_abs_pos (bool): If True, use absolute positional embeddings. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. | |
global_attn_indexes (list): Indexes for blocks using global attention. | |
""" | |
super().__init__() | |
self.img_size = img_size | |
self.patch_embed = PatchEmbed( | |
kernel_size=(patch_size, patch_size), | |
stride=(patch_size, patch_size), | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
self.pos_embed: Optional[nn.Parameter] = None | |
if use_abs_pos: | |
# Initialize absolute positional embedding with pretrain image size. | |
self.pos_embed = nn.Parameter(torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)) | |
self.blocks = nn.ModuleList() | |
for i in range(depth): | |
block = Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
window_size=window_size if i not in global_attn_indexes else 0, | |
input_size=(img_size // patch_size, img_size // patch_size), | |
) | |
self.blocks.append(block) | |
self.neck = nn.Sequential( | |
nn.Conv2d( | |
embed_dim, | |
out_chans, | |
kernel_size=1, | |
bias=False, | |
), | |
LayerNorm2d(out_chans), | |
nn.Conv2d( | |
out_chans, | |
out_chans, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
), | |
LayerNorm2d(out_chans), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Processes input through patch embedding, applies positional embedding if present, and passes through blocks | |
and neck. | |
""" | |
x = self.patch_embed(x) | |
if self.pos_embed is not None: | |
x = x + self.pos_embed | |
for blk in self.blocks: | |
x = blk(x) | |
return self.neck(x.permute(0, 3, 1, 2)) | |
class PromptEncoder(nn.Module): | |
""" | |
Encodes different types of prompts, including points, boxes, and masks, for input to SAM's mask decoder. The encoder | |
produces both sparse and dense embeddings for the input prompts. | |
Attributes: | |
embed_dim (int): Dimension of the embeddings. | |
input_image_size (Tuple[int, int]): Size of the input image as (H, W). | |
image_embedding_size (Tuple[int, int]): Spatial size of the image embedding as (H, W). | |
pe_layer (PositionEmbeddingRandom): Module for random position embedding. | |
num_point_embeddings (int): Number of point embeddings for different types of points. | |
point_embeddings (nn.ModuleList): List of point embeddings. | |
not_a_point_embed (nn.Embedding): Embedding for points that are not a part of any label. | |
mask_input_size (Tuple[int, int]): Size of the input mask. | |
mask_downscaling (nn.Sequential): Neural network for downscaling the mask. | |
no_mask_embed (nn.Embedding): Embedding for cases where no mask is provided. | |
""" | |
def __init__( | |
self, | |
embed_dim: int, | |
image_embedding_size: Tuple[int, int], | |
input_image_size: Tuple[int, int], | |
mask_in_chans: int, | |
activation: Type[nn.Module] = nn.GELU, | |
) -> None: | |
""" | |
Encodes prompts for input to SAM's mask decoder. | |
Args: | |
embed_dim (int): The prompts' embedding dimension | |
image_embedding_size (tuple(int, int)): The spatial size of the | |
image embedding, as (H, W). | |
input_image_size (int): The padded size of the image as input | |
to the image encoder, as (H, W). | |
mask_in_chans (int): The number of hidden channels used for | |
encoding input masks. | |
activation (nn.Module): The activation to use when encoding | |
input masks. | |
""" | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.input_image_size = input_image_size | |
self.image_embedding_size = image_embedding_size | |
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) | |
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners | |
point_embeddings = [nn.Embedding(1, embed_dim) for _ in range(self.num_point_embeddings)] | |
self.point_embeddings = nn.ModuleList(point_embeddings) | |
self.not_a_point_embed = nn.Embedding(1, embed_dim) | |
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) | |
self.mask_downscaling = nn.Sequential( | |
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), | |
LayerNorm2d(mask_in_chans // 4), | |
activation(), | |
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), | |
LayerNorm2d(mask_in_chans), | |
activation(), | |
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), | |
) | |
self.no_mask_embed = nn.Embedding(1, embed_dim) | |
def get_dense_pe(self) -> torch.Tensor: | |
""" | |
Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the | |
image encoding. | |
Returns: | |
torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) | |
""" | |
return self.pe_layer(self.image_embedding_size).unsqueeze(0) | |
def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor: | |
"""Embeds point prompts.""" | |
points = points + 0.5 # Shift to center of pixel | |
if pad: | |
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) | |
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) | |
points = torch.cat([points, padding_point], dim=1) | |
labels = torch.cat([labels, padding_label], dim=1) | |
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) | |
point_embedding[labels == -1] = 0.0 | |
point_embedding[labels == -1] += self.not_a_point_embed.weight | |
point_embedding[labels == 0] += self.point_embeddings[0].weight | |
point_embedding[labels == 1] += self.point_embeddings[1].weight | |
return point_embedding | |
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: | |
"""Embeds box prompts.""" | |
boxes = boxes + 0.5 # Shift to center of pixel | |
coords = boxes.reshape(-1, 2, 2) | |
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) | |
corner_embedding[:, 0, :] += self.point_embeddings[2].weight | |
corner_embedding[:, 1, :] += self.point_embeddings[3].weight | |
return corner_embedding | |
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: | |
"""Embeds mask inputs.""" | |
return self.mask_downscaling(masks) | |
def _get_batch_size( | |
self, | |
points: Optional[Tuple[torch.Tensor, torch.Tensor]], | |
boxes: Optional[torch.Tensor], | |
masks: Optional[torch.Tensor], | |
) -> int: | |
"""Gets the batch size of the output given the batch size of the input prompts.""" | |
if points is not None: | |
return points[0].shape[0] | |
elif boxes is not None: | |
return boxes.shape[0] | |
elif masks is not None: | |
return masks.shape[0] | |
else: | |
return 1 | |
def _get_device(self) -> torch.device: | |
"""Returns the device of the first point embedding's weight tensor.""" | |
return self.point_embeddings[0].weight.device | |
def forward( | |
self, | |
points: Optional[Tuple[torch.Tensor, torch.Tensor]], | |
boxes: Optional[torch.Tensor], | |
masks: Optional[torch.Tensor], | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Embeds different types of prompts, returning both sparse and dense embeddings. | |
Args: | |
points (tuple(torch.Tensor, torch.Tensor), None): point coordinates and labels to embed. | |
boxes (torch.Tensor, None): boxes to embed | |
masks (torch.Tensor, None): masks to embed | |
Returns: | |
torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined | |
by the number of input points and boxes. | |
torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) | |
""" | |
bs = self._get_batch_size(points, boxes, masks) | |
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) | |
if points is not None: | |
coords, labels = points | |
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) | |
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) | |
if boxes is not None: | |
box_embeddings = self._embed_boxes(boxes) | |
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) | |
if masks is not None: | |
dense_embeddings = self._embed_masks(masks) | |
else: | |
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( | |
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] | |
) | |
return sparse_embeddings, dense_embeddings | |
class PositionEmbeddingRandom(nn.Module): | |
"""Positional encoding using random spatial frequencies.""" | |
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: | |
"""Initializes a position embedding using random spatial frequencies.""" | |
super().__init__() | |
if scale is None or scale <= 0.0: | |
scale = 1.0 | |
self.register_buffer("positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats))) | |
# Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation' | |
torch.use_deterministic_algorithms(False) | |
torch.backends.cudnn.deterministic = False | |
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: | |
"""Positionally encode points that are normalized to [0,1].""" | |
# Assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape | |
coords = 2 * coords - 1 | |
coords = coords @ self.positional_encoding_gaussian_matrix | |
coords = 2 * np.pi * coords | |
# Outputs d_1 x ... x d_n x C shape | |
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) | |
def forward(self, size: Tuple[int, int]) -> torch.Tensor: | |
"""Generate positional encoding for a grid of the specified size.""" | |
h, w = size | |
device: Any = self.positional_encoding_gaussian_matrix.device | |
grid = torch.ones((h, w), device=device, dtype=torch.float32) | |
y_embed = grid.cumsum(dim=0) - 0.5 | |
x_embed = grid.cumsum(dim=1) - 0.5 | |
y_embed = y_embed / h | |
x_embed = x_embed / w | |
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) | |
return pe.permute(2, 0, 1) # C x H x W | |
def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: | |
"""Positionally encode points that are not normalized to [0,1].""" | |
coords = coords_input.clone() | |
coords[:, :, 0] = coords[:, :, 0] / image_size[1] | |
coords[:, :, 1] = coords[:, :, 1] / image_size[0] | |
return self._pe_encoding(coords.to(torch.float)) # B x N x C | |
class Block(nn.Module): | |
"""Transformer blocks with support of window attention and residual propagation blocks.""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = True, | |
norm_layer: Type[nn.Module] = nn.LayerNorm, | |
act_layer: Type[nn.Module] = nn.GELU, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
window_size: int = 0, | |
input_size: Optional[Tuple[int, int]] = None, | |
) -> None: | |
""" | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads in each ViT block. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
norm_layer (nn.Module): Normalization layer. | |
act_layer (nn.Module): Activation layer. | |
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
window_size (int): Window size for window attention blocks. If it equals 0, then | |
use global attention. | |
input_size (tuple(int, int), None): Input resolution for calculating the relative | |
positional parameter size. | |
""" | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
use_rel_pos=use_rel_pos, | |
rel_pos_zero_init=rel_pos_zero_init, | |
input_size=input_size if window_size == 0 else (window_size, window_size), | |
) | |
self.norm2 = norm_layer(dim) | |
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer) | |
self.window_size = window_size | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Executes a forward pass through the transformer block with window attention and non-overlapping windows.""" | |
shortcut = x | |
x = self.norm1(x) | |
# Window partition | |
if self.window_size > 0: | |
H, W = x.shape[1], x.shape[2] | |
x, pad_hw = window_partition(x, self.window_size) | |
x = self.attn(x) | |
# Reverse window partition | |
if self.window_size > 0: | |
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
x = shortcut + x | |
return x + self.mlp(self.norm2(x)) | |
class Attention(nn.Module): | |
"""Multi-head Attention block with relative position embeddings.""" | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = True, | |
use_rel_pos: bool = False, | |
rel_pos_zero_init: bool = True, | |
input_size: Optional[Tuple[int, int]] = None, | |
) -> None: | |
""" | |
Initialize Attention module. | |
Args: | |
dim (int): Number of input channels. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
input_size (tuple(int, int), None): Input resolution for calculating the relative | |
positional parameter size. | |
""" | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(dim, dim) | |
self.use_rel_pos = use_rel_pos | |
if self.use_rel_pos: | |
assert input_size is not None, "Input size must be provided if using relative positional encoding." | |
# Initialize relative positional embeddings | |
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Applies the forward operation including attention, normalization, MLP, and indexing within window limits.""" | |
B, H, W, _ = x.shape | |
# qkv with shape (3, B, nHead, H * W, C) | |
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
# q, k, v with shape (B * nHead, H * W, C) | |
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
attn = (q * self.scale) @ k.transpose(-2, -1) | |
if self.use_rel_pos: | |
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
return self.proj(x) | |
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: | |
""" | |
Partition into non-overlapping windows with padding if needed. | |
Args: | |
x (tensor): input tokens with [B, H, W, C]. | |
window_size (int): window size. | |
Returns: | |
windows: windows after partition with [B * num_windows, window_size, window_size, C]. | |
(Hp, Wp): padded height and width before partition | |
""" | |
B, H, W, C = x.shape | |
pad_h = (window_size - H % window_size) % window_size | |
pad_w = (window_size - W % window_size) % window_size | |
if pad_h > 0 or pad_w > 0: | |
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
Hp, Wp = H + pad_h, W + pad_w | |
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | |
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
return windows, (Hp, Wp) | |
def window_unpartition( | |
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int] | |
) -> torch.Tensor: | |
""" | |
Window unpartition into original sequences and removing padding. | |
Args: | |
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | |
window_size (int): window size. | |
pad_hw (Tuple): padded height and width (Hp, Wp). | |
hw (Tuple): original height and width (H, W) before padding. | |
Returns: | |
x: unpartitioned sequences with [B, H, W, C]. | |
""" | |
Hp, Wp = pad_hw | |
H, W = hw | |
B = windows.shape[0] // (Hp * Wp // window_size // window_size) | |
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) | |
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | |
if Hp > H or Wp > W: | |
x = x[:, :H, :W, :].contiguous() | |
return x | |
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: | |
""" | |
Get relative positional embeddings according to the relative positions of query and key sizes. | |
Args: | |
q_size (int): size of query q. | |
k_size (int): size of key k. | |
rel_pos (Tensor): relative position embeddings (L, C). | |
Returns: | |
Extracted positional embeddings according to relative positions. | |
""" | |
max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
# Interpolate rel pos if needed. | |
if rel_pos.shape[0] != max_rel_dist: | |
# Interpolate rel pos. | |
rel_pos_resized = F.interpolate( | |
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
size=max_rel_dist, | |
mode="linear", | |
) | |
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
else: | |
rel_pos_resized = rel_pos | |
# Scale the coords with short length if shapes for q and k are different. | |
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
return rel_pos_resized[relative_coords.long()] | |
def add_decomposed_rel_pos( | |
attn: torch.Tensor, | |
q: torch.Tensor, | |
rel_pos_h: torch.Tensor, | |
rel_pos_w: torch.Tensor, | |
q_size: Tuple[int, int], | |
k_size: Tuple[int, int], | |
) -> torch.Tensor: | |
""" | |
Calculate decomposed Relative Positional Embeddings from mvitv2 paper at | |
https://github.com/facebookresearch/mvit/blob/main/mvit/models/attention.py. | |
Args: | |
attn (Tensor): attention map. | |
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). | |
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. | |
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. | |
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). | |
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). | |
Returns: | |
attn (Tensor): attention map with added relative positional embeddings. | |
""" | |
q_h, q_w = q_size | |
k_h, k_w = k_size | |
Rh = get_rel_pos(q_h, k_h, rel_pos_h) | |
Rw = get_rel_pos(q_w, k_w, rel_pos_w) | |
B, _, dim = q.shape | |
r_q = q.reshape(B, q_h, q_w, dim) | |
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) | |
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) | |
attn = (attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]).view( | |
B, q_h * q_w, k_h * k_w | |
) | |
return attn | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding.""" | |
def __init__( | |
self, | |
kernel_size: Tuple[int, int] = (16, 16), | |
stride: Tuple[int, int] = (16, 16), | |
padding: Tuple[int, int] = (0, 0), | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
) -> None: | |
""" | |
Initialize PatchEmbed module. | |
Args: | |
kernel_size (Tuple): kernel size of the projection layer. | |
stride (Tuple): stride of the projection layer. | |
padding (Tuple): padding size of the projection layer. | |
in_chans (int): Number of input image channels. | |
embed_dim (int): Patch embedding dimension. | |
""" | |
super().__init__() | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
"""Computes patch embedding by applying convolution and transposing resulting tensor.""" | |
return self.proj(x).permute(0, 2, 3, 1) # B C H W -> B H W C | |