xiaoming32236046's picture
Upload 325 files
53ad959 verified
raw
history blame
4.94 kB
# Ultralytics YOLO πŸš€, AGPL-3.0 license
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
import torch
from ultralytics.utils.downloads import attempt_download_asset
from .modules.decoders import MaskDecoder
from .modules.encoders import ImageEncoderViT, PromptEncoder
from .modules.sam import Sam
from .modules.tiny_encoder import TinyViT
from .modules.transformer import TwoWayTransformer
def build_sam_vit_h(checkpoint=None):
"""Build and return a Segment Anything Model (SAM) h-size model."""
return _build_sam(
encoder_embed_dim=1280,
encoder_depth=32,
encoder_num_heads=16,
encoder_global_attn_indexes=[7, 15, 23, 31],
checkpoint=checkpoint,
)
def build_sam_vit_l(checkpoint=None):
"""Build and return a Segment Anything Model (SAM) l-size model."""
return _build_sam(
encoder_embed_dim=1024,
encoder_depth=24,
encoder_num_heads=16,
encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
)
def build_sam_vit_b(checkpoint=None):
"""Build and return a Segment Anything Model (SAM) b-size model."""
return _build_sam(
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
encoder_global_attn_indexes=[2, 5, 8, 11],
checkpoint=checkpoint,
)
def build_mobile_sam(checkpoint=None):
"""Build and return Mobile Segment Anything Model (Mobile-SAM)."""
return _build_sam(
encoder_embed_dim=[64, 128, 160, 320],
encoder_depth=[2, 2, 6, 2],
encoder_num_heads=[2, 4, 5, 10],
encoder_global_attn_indexes=None,
mobile_sam=True,
checkpoint=checkpoint,
)
def _build_sam(
encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, checkpoint=None, mobile_sam=False
):
"""Builds the selected SAM model architecture."""
prompt_embed_dim = 256
image_size = 1024
vit_patch_size = 16
image_embedding_size = image_size // vit_patch_size
image_encoder = (
TinyViT(
img_size=1024,
in_chans=3,
num_classes=1000,
embed_dims=encoder_embed_dim,
depths=encoder_depth,
num_heads=encoder_num_heads,
window_sizes=[7, 7, 14, 7],
mlp_ratio=4.0,
drop_rate=0.0,
drop_path_rate=0.0,
use_checkpoint=False,
mbconv_expand_ratio=4.0,
local_conv_size=3,
layer_lr_decay=0.8,
)
if mobile_sam
else ImageEncoderViT(
depth=encoder_depth,
embed_dim=encoder_embed_dim,
img_size=image_size,
mlp_ratio=4,
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6),
num_heads=encoder_num_heads,
patch_size=vit_patch_size,
qkv_bias=True,
use_rel_pos=True,
global_attn_indexes=encoder_global_attn_indexes,
window_size=14,
out_chans=prompt_embed_dim,
)
)
sam = Sam(
image_encoder=image_encoder,
prompt_encoder=PromptEncoder(
embed_dim=prompt_embed_dim,
image_embedding_size=(image_embedding_size, image_embedding_size),
input_image_size=(image_size, image_size),
mask_in_chans=16,
),
mask_decoder=MaskDecoder(
num_multimask_outputs=3,
transformer=TwoWayTransformer(
depth=2,
embedding_dim=prompt_embed_dim,
mlp_dim=2048,
num_heads=8,
),
transformer_dim=prompt_embed_dim,
iou_head_depth=3,
iou_head_hidden_dim=256,
),
pixel_mean=[123.675, 116.28, 103.53],
pixel_std=[58.395, 57.12, 57.375],
)
if checkpoint is not None:
checkpoint = attempt_download_asset(checkpoint)
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
sam.load_state_dict(state_dict)
sam.eval()
# sam.load_state_dict(torch.load(checkpoint), strict=True)
# sam.eval()
return sam
sam_model_map = {
"sam_h.pt": build_sam_vit_h,
"sam_l.pt": build_sam_vit_l,
"sam_b.pt": build_sam_vit_b,
"mobile_sam.pt": build_mobile_sam,
}
def build_sam(ckpt="sam_b.pt"):
"""Build a SAM model specified by ckpt."""
model_builder = None
ckpt = str(ckpt) # to allow Path ckpt types
for k in sam_model_map.keys():
if ckpt.endswith(k):
model_builder = sam_model_map.get(k)
if not model_builder:
raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
return model_builder(ckpt)