Spaces:
Sleeping
Sleeping
# Ultralytics YOLO ๐, AGPL-3.0 license | |
""" | |
Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. | |
Usage - sources: | |
$ yolo mode=predict model=yolov8n.pt source=0 # webcam | |
img.jpg # image | |
vid.mp4 # video | |
screen # screenshot | |
path/ # directory | |
list.txt # list of images | |
list.streams # list of streams | |
'path/*.jpg' # glob | |
'https://youtu.be/LNwODJXcvt4' # YouTube | |
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream | |
Usage - formats: | |
$ yolo mode=predict model=yolov8n.pt # PyTorch | |
yolov8n.torchscript # TorchScript | |
yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True | |
yolov8n_openvino_model # OpenVINO | |
yolov8n.engine # TensorRT | |
yolov8n.mlpackage # CoreML (macOS-only) | |
yolov8n_saved_model # TensorFlow SavedModel | |
yolov8n.pb # TensorFlow GraphDef | |
yolov8n.tflite # TensorFlow Lite | |
yolov8n_edgetpu.tflite # TensorFlow Edge TPU | |
yolov8n_paddle_model # PaddlePaddle | |
yolov8n_ncnn_model # NCNN | |
""" | |
import platform | |
import re | |
import threading | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
from ultralytics.cfg import get_cfg, get_save_dir | |
from ultralytics.data import load_inference_source | |
from ultralytics.data.augment import LetterBox, classify_transforms | |
from ultralytics.nn.autobackend import AutoBackend | |
from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops | |
from ultralytics.utils.checks import check_imgsz, check_imshow | |
from ultralytics.utils.files import increment_path | |
from ultralytics.utils.torch_utils import select_device, smart_inference_mode | |
STREAM_WARNING = """ | |
WARNING โ ๏ธ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory | |
errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help. | |
Example: | |
results = model(source=..., stream=True) # generator of Results objects | |
for r in results: | |
boxes = r.boxes # Boxes object for bbox outputs | |
masks = r.masks # Masks object for segment masks outputs | |
probs = r.probs # Class probabilities for classification outputs | |
""" | |
class BasePredictor: | |
""" | |
BasePredictor. | |
A base class for creating predictors. | |
Attributes: | |
args (SimpleNamespace): Configuration for the predictor. | |
save_dir (Path): Directory to save results. | |
done_warmup (bool): Whether the predictor has finished setup. | |
model (nn.Module): Model used for prediction. | |
data (dict): Data configuration. | |
device (torch.device): Device used for prediction. | |
dataset (Dataset): Dataset used for prediction. | |
vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output. | |
""" | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
""" | |
Initializes the BasePredictor class. | |
Args: | |
cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. | |
overrides (dict, optional): Configuration overrides. Defaults to None. | |
""" | |
self.args = get_cfg(cfg, overrides) | |
self.save_dir = get_save_dir(self.args) | |
if self.args.conf is None: | |
self.args.conf = 0.25 # default conf=0.25 | |
self.done_warmup = False | |
if self.args.show: | |
self.args.show = check_imshow(warn=True) | |
# Usable if setup is done | |
self.model = None | |
self.data = self.args.data # data_dict | |
self.imgsz = None | |
self.device = None | |
self.dataset = None | |
self.vid_writer = {} # dict of {save_path: video_writer, ...} | |
self.plotted_img = None | |
self.source_type = None | |
self.seen = 0 | |
self.windows = [] | |
self.batch = None | |
self.results = None | |
self.transforms = None | |
self.callbacks = _callbacks or callbacks.get_default_callbacks() | |
self.txt_path = None | |
self._lock = threading.Lock() # for automatic thread-safe inference | |
callbacks.add_integration_callbacks(self) | |
def preprocess(self, im): | |
""" | |
Prepares input image before inference. | |
Args: | |
im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list. | |
""" | |
not_tensor = not isinstance(im, torch.Tensor) | |
if not_tensor: | |
im = np.stack(self.pre_transform(im)) | |
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w) | |
im = np.ascontiguousarray(im) # contiguous | |
im = torch.from_numpy(im) | |
im = im.to(self.device) | |
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32 | |
if not_tensor: | |
im /= 255 # 0 - 255 to 0.0 - 1.0 | |
return im | |
def inference(self, im, *args, **kwargs): | |
"""Runs inference on a given image using the specified model and arguments.""" | |
visualize = ( | |
increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True) | |
if self.args.visualize and (not self.source_type.tensor) | |
else False | |
) | |
return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs) | |
def pre_transform(self, im): | |
""" | |
Pre-transform input image before inference. | |
Args: | |
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. | |
Returns: | |
(list): A list of transformed images. | |
""" | |
same_shapes = len({x.shape for x in im}) == 1 | |
letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride) | |
return [letterbox(image=x) for x in im] | |
def postprocess(self, preds, img, orig_imgs): | |
"""Post-processes predictions for an image and returns them.""" | |
return preds | |
def __call__(self, source=None, model=None, stream=False, *args, **kwargs): | |
"""Performs inference on an image or stream.""" | |
self.stream = stream | |
if stream: | |
return self.stream_inference(source, model, *args, **kwargs) | |
else: | |
return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one | |
def predict_cli(self, source=None, model=None): | |
""" | |
Method used for CLI prediction. | |
It uses always generator as outputs as not required by CLI mode. | |
""" | |
gen = self.stream_inference(source, model) | |
for _ in gen: # noqa, running CLI inference without accumulating any outputs (do not modify) | |
pass | |
def setup_source(self, source): | |
"""Sets up source and inference mode.""" | |
self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size | |
self.transforms = ( | |
getattr( | |
self.model.model, | |
"transforms", | |
classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction), | |
) | |
if self.args.task == "classify" | |
else None | |
) | |
self.dataset = load_inference_source( | |
source=source, | |
batch=self.args.batch, | |
vid_stride=self.args.vid_stride, | |
buffer=self.args.stream_buffer, | |
) | |
self.source_type = self.dataset.source_type | |
if not getattr(self, "stream", True) and ( | |
self.source_type.stream | |
or self.source_type.screenshot | |
or len(self.dataset) > 1000 # many images | |
or any(getattr(self.dataset, "video_flag", [False])) | |
): # videos | |
LOGGER.warning(STREAM_WARNING) | |
self.vid_writer = {} | |
def stream_inference(self, source=None, model=None, *args, **kwargs): | |
"""Streams real-time inference on camera feed and saves results to file.""" | |
if self.args.verbose: | |
LOGGER.info("") | |
# Setup model | |
if not self.model: | |
self.setup_model(model) | |
with self._lock: # for thread-safe inference | |
# Setup source every time predict is called | |
self.setup_source(source if source is not None else self.args.source) | |
# Check if save_dir/ label file exists | |
if self.args.save or self.args.save_txt: | |
(self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) | |
# Warmup model | |
if not self.done_warmup: | |
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz)) | |
self.done_warmup = True | |
self.seen, self.windows, self.batch = 0, [], None | |
profilers = ( | |
ops.Profile(device=self.device), | |
ops.Profile(device=self.device), | |
ops.Profile(device=self.device), | |
) | |
self.run_callbacks("on_predict_start") | |
for self.batch in self.dataset: | |
self.run_callbacks("on_predict_batch_start") | |
paths, im0s, s = self.batch | |
# Preprocess | |
with profilers[0]: | |
im = self.preprocess(im0s) | |
# Inference | |
with profilers[1]: | |
preds = self.inference(im, *args, **kwargs) | |
if self.args.embed: | |
yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors | |
continue | |
# Postprocess | |
with profilers[2]: | |
self.results = self.postprocess(preds, im, im0s) | |
self.run_callbacks("on_predict_postprocess_end") | |
# Visualize, save, write results | |
n = len(im0s) | |
for i in range(n): | |
self.seen += 1 | |
self.results[i].speed = { | |
"preprocess": profilers[0].dt * 1e3 / n, | |
"inference": profilers[1].dt * 1e3 / n, | |
"postprocess": profilers[2].dt * 1e3 / n, | |
} | |
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show: | |
s[i] += self.write_results(i, Path(paths[i]), im, s) | |
# Print batch results | |
if self.args.verbose: | |
LOGGER.info("\n".join(s)) | |
self.run_callbacks("on_predict_batch_end") | |
yield from self.results | |
# Release assets | |
for v in self.vid_writer.values(): | |
if isinstance(v, cv2.VideoWriter): | |
v.release() | |
# Print final results | |
if self.args.verbose and self.seen: | |
t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image | |
LOGGER.info( | |
f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape " | |
f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t | |
) | |
if self.args.save or self.args.save_txt or self.args.save_crop: | |
nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels | |
s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else "" | |
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") | |
self.run_callbacks("on_predict_end") | |
def setup_model(self, model, verbose=True): | |
"""Initialize YOLO model with given parameters and set it to evaluation mode.""" | |
self.model = AutoBackend( | |
weights=model or self.args.model, | |
device=select_device(self.args.device, verbose=verbose), | |
dnn=self.args.dnn, | |
data=self.args.data, | |
fp16=self.args.half, | |
batch=self.args.batch, | |
fuse=True, | |
verbose=verbose, | |
) | |
self.device = self.model.device # update device | |
self.args.half = self.model.fp16 # update half | |
self.model.eval() | |
def write_results(self, i, p, im, s): | |
"""Write inference results to a file or directory.""" | |
string = "" # print string | |
if len(im.shape) == 3: | |
im = im[None] # expand for batch dim | |
if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1 | |
string += f"{i}: " | |
frame = self.dataset.count | |
else: | |
match = re.search(r"frame (\d+)/", s[i]) | |
frame = int(match.group(1)) if match else None # 0 if frame undetermined | |
self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}")) | |
string += "%gx%g " % im.shape[2:] | |
result = self.results[i] | |
result.save_dir = self.save_dir.__str__() # used in other locations | |
string += result.verbose() + f"{result.speed['inference']:.1f}ms" | |
# Add predictions to image | |
if self.args.save or self.args.show: | |
self.plotted_img = result.plot( | |
line_width=self.args.line_width, | |
boxes=self.args.show_boxes, | |
conf=self.args.show_conf, | |
labels=self.args.show_labels, | |
im_gpu=None if self.args.retina_masks else im[i], | |
) | |
# Save results | |
if self.args.save_txt: | |
result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf) | |
if self.args.save_crop: | |
result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem) | |
if self.args.show: | |
self.show(str(p)) | |
if self.args.save: | |
self.save_predicted_images(str(self.save_dir / (p.name or "tmp.jpg")), frame) | |
return string | |
def save_predicted_images(self, save_path="", frame=0): | |
"""Save video predictions as mp4 at specified path.""" | |
im = self.plotted_img | |
# Save videos and streams | |
if self.dataset.mode in {"stream", "video"}: | |
fps = self.dataset.fps if self.dataset.mode == "video" else 30 | |
frames_path = f'{save_path.split(".", 1)[0]}_frames/' | |
if save_path not in self.vid_writer: # new video | |
if self.args.save_frames: | |
Path(frames_path).mkdir(parents=True, exist_ok=True) | |
suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG") | |
self.vid_writer[save_path] = cv2.VideoWriter( | |
filename=str(Path(save_path).with_suffix(suffix)), | |
fourcc=cv2.VideoWriter_fourcc(*fourcc), | |
fps=fps, # integer required, floats produce error in MP4 codec | |
frameSize=(im.shape[1], im.shape[0]), # (width, height) | |
) | |
# Save video | |
self.vid_writer[save_path].write(im) | |
if self.args.save_frames: | |
cv2.imwrite(f"{frames_path}{frame}.jpg", im) | |
# Save images | |
else: | |
cv2.imwrite(save_path, im) | |
def show(self, p=""): | |
"""Display an image in a window using OpenCV imshow().""" | |
im = self.plotted_img | |
if platform.system() == "Linux" and p not in self.windows: | |
self.windows.append(p) | |
cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) | |
cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height) | |
cv2.imshow(p, im) | |
cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond | |
def run_callbacks(self, event: str): | |
"""Runs all registered callbacks for a specific event.""" | |
for callback in self.callbacks.get(event, []): | |
callback(self) | |
def add_callback(self, event: str, func): | |
"""Add callback.""" | |
self.callbacks[event].append(func) | |