Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import contextlib | |
import hashlib | |
import json | |
import os | |
import random | |
import subprocess | |
import time | |
import zipfile | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
from tarfile import is_tarfile | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageOps | |
from ultralytics.nn.autobackend import check_class_names | |
from ultralytics.utils import ( | |
DATASETS_DIR, | |
LOGGER, | |
NUM_THREADS, | |
ROOT, | |
SETTINGS_YAML, | |
TQDM, | |
clean_url, | |
colorstr, | |
emojis, | |
yaml_load, | |
yaml_save, | |
) | |
from ultralytics.utils.checks import check_file, check_font, is_ascii | |
from ultralytics.utils.downloads import download, safe_download, unzip_file | |
from ultralytics.utils.ops import segments2boxes | |
HELP_URL = "See https://docs.ultralytics.com/datasets/detect for dataset formatting guidance." | |
IMG_FORMATS = {"bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "pfm"} # image suffixes | |
VID_FORMATS = {"asf", "avi", "gif", "m4v", "mkv", "mov", "mp4", "mpeg", "mpg", "ts", "wmv", "webm"} # video suffixes | |
PIN_MEMORY = str(os.getenv("PIN_MEMORY", True)).lower() == "true" # global pin_memory for dataloaders | |
def img2label_paths(img_paths): | |
"""Define label paths as a function of image paths.""" | |
sa, sb = f"{os.sep}images{os.sep}", f"{os.sep}labels{os.sep}" # /images/, /labels/ substrings | |
return [sb.join(x.rsplit(sa, 1)).rsplit(".", 1)[0] + ".txt" for x in img_paths] | |
def get_hash(paths): | |
"""Returns a single hash value of a list of paths (files or dirs).""" | |
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes | |
h = hashlib.sha256(str(size).encode()) # hash sizes | |
h.update("".join(paths).encode()) # hash paths | |
return h.hexdigest() # return hash | |
def exif_size(img: Image.Image): | |
"""Returns exif-corrected PIL size.""" | |
s = img.size # (width, height) | |
if img.format == "JPEG": # only support JPEG images | |
with contextlib.suppress(Exception): | |
exif = img.getexif() | |
if exif: | |
rotation = exif.get(274, None) # the EXIF key for the orientation tag is 274 | |
if rotation in [6, 8]: # rotation 270 or 90 | |
s = s[1], s[0] | |
return s | |
def verify_image(args): | |
"""Verify one image.""" | |
(im_file, cls), prefix = args | |
# Number (found, corrupt), message | |
nf, nc, msg = 0, 0, "" | |
try: | |
im = Image.open(im_file) | |
im.verify() # PIL verify | |
shape = exif_size(im) # image size | |
shape = (shape[1], shape[0]) # hw | |
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" | |
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" | |
if im.format.lower() in ("jpg", "jpeg"): | |
with open(im_file, "rb") as f: | |
f.seek(-2, 2) | |
if f.read() != b"\xff\xd9": # corrupt JPEG | |
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) | |
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved" | |
nf = 1 | |
except Exception as e: | |
nc = 1 | |
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}" | |
return (im_file, cls), nf, nc, msg | |
def verify_image_label(args): | |
"""Verify one image-label pair.""" | |
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args | |
# Number (missing, found, empty, corrupt), message, segments, keypoints | |
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, "", [], None | |
try: | |
# Verify images | |
im = Image.open(im_file) | |
im.verify() # PIL verify | |
shape = exif_size(im) # image size | |
shape = (shape[1], shape[0]) # hw | |
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels" | |
assert im.format.lower() in IMG_FORMATS, f"invalid image format {im.format}" | |
if im.format.lower() in ("jpg", "jpeg"): | |
with open(im_file, "rb") as f: | |
f.seek(-2, 2) | |
if f.read() != b"\xff\xd9": # corrupt JPEG | |
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, "JPEG", subsampling=0, quality=100) | |
msg = f"{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved" | |
# Verify labels | |
if os.path.isfile(lb_file): | |
nf = 1 # label found | |
with open(lb_file) as f: | |
lb = [x.split() for x in f.read().strip().splitlines() if len(x)] | |
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment | |
classes = np.array([x[0] for x in lb], dtype=np.float32) | |
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) | |
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) | |
lb = np.array(lb, dtype=np.float32) | |
nl = len(lb) | |
if nl: | |
if keypoint: | |
assert lb.shape[1] == (5 + nkpt * ndim), f"labels require {(5 + nkpt * ndim)} columns each" | |
points = lb[:, 5:].reshape(-1, ndim)[:, :2] | |
else: | |
assert lb.shape[1] == 5, f"labels require 5 columns, {lb.shape[1]} columns detected" | |
points = lb[:, 1:] | |
assert points.max() <= 1, f"non-normalized or out of bounds coordinates {points[points > 1]}" | |
assert lb.min() >= 0, f"negative label values {lb[lb < 0]}" | |
# All labels | |
max_cls = lb[:, 0].max() # max label count | |
assert max_cls <= num_cls, ( | |
f"Label class {int(max_cls)} exceeds dataset class count {num_cls}. " | |
f"Possible class labels are 0-{num_cls - 1}" | |
) | |
_, i = np.unique(lb, axis=0, return_index=True) | |
if len(i) < nl: # duplicate row check | |
lb = lb[i] # remove duplicates | |
if segments: | |
segments = [segments[x] for x in i] | |
msg = f"{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed" | |
else: | |
ne = 1 # label empty | |
lb = np.zeros((0, (5 + nkpt * ndim) if keypoint else 5), dtype=np.float32) | |
else: | |
nm = 1 # label missing | |
lb = np.zeros((0, (5 + nkpt * ndim) if keypoints else 5), dtype=np.float32) | |
if keypoint: | |
keypoints = lb[:, 5:].reshape(-1, nkpt, ndim) | |
if ndim == 2: | |
kpt_mask = np.where((keypoints[..., 0] < 0) | (keypoints[..., 1] < 0), 0.0, 1.0).astype(np.float32) | |
keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3) | |
lb = lb[:, :5] | |
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg | |
except Exception as e: | |
nc = 1 | |
msg = f"{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}" | |
return [None, None, None, None, None, nm, nf, ne, nc, msg] | |
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1): | |
""" | |
Convert a list of polygons to a binary mask of the specified image size. | |
Args: | |
imgsz (tuple): The size of the image as (height, width). | |
polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where | |
N is the number of polygons, and M is the number of points such that M % 2 = 0. | |
color (int, optional): The color value to fill in the polygons on the mask. Defaults to 1. | |
downsample_ratio (int, optional): Factor by which to downsample the mask. Defaults to 1. | |
Returns: | |
(np.ndarray): A binary mask of the specified image size with the polygons filled in. | |
""" | |
mask = np.zeros(imgsz, dtype=np.uint8) | |
polygons = np.asarray(polygons, dtype=np.int32) | |
polygons = polygons.reshape((polygons.shape[0], -1, 2)) | |
cv2.fillPoly(mask, polygons, color=color) | |
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio) | |
# Note: fillPoly first then resize is trying to keep the same loss calculation method when mask-ratio=1 | |
return cv2.resize(mask, (nw, nh)) | |
def polygons2masks(imgsz, polygons, color, downsample_ratio=1): | |
""" | |
Convert a list of polygons to a set of binary masks of the specified image size. | |
Args: | |
imgsz (tuple): The size of the image as (height, width). | |
polygons (list[np.ndarray]): A list of polygons. Each polygon is an array with shape [N, M], where | |
N is the number of polygons, and M is the number of points such that M % 2 = 0. | |
color (int): The color value to fill in the polygons on the masks. | |
downsample_ratio (int, optional): Factor by which to downsample each mask. Defaults to 1. | |
Returns: | |
(np.ndarray): A set of binary masks of the specified image size with the polygons filled in. | |
""" | |
return np.array([polygon2mask(imgsz, [x.reshape(-1)], color, downsample_ratio) for x in polygons]) | |
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1): | |
"""Return a (640, 640) overlap mask.""" | |
masks = np.zeros( | |
(imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio), | |
dtype=np.int32 if len(segments) > 255 else np.uint8, | |
) | |
areas = [] | |
ms = [] | |
for si in range(len(segments)): | |
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1) | |
ms.append(mask) | |
areas.append(mask.sum()) | |
areas = np.asarray(areas) | |
index = np.argsort(-areas) | |
ms = np.array(ms)[index] | |
for i in range(len(segments)): | |
mask = ms[i] * (i + 1) | |
masks = masks + mask | |
masks = np.clip(masks, a_min=0, a_max=i + 1) | |
return masks, index | |
def find_dataset_yaml(path: Path) -> Path: | |
""" | |
Find and return the YAML file associated with a Detect, Segment or Pose dataset. | |
This function searches for a YAML file at the root level of the provided directory first, and if not found, it | |
performs a recursive search. It prefers YAML files that have the same stem as the provided path. An AssertionError | |
is raised if no YAML file is found or if multiple YAML files are found. | |
Args: | |
path (Path): The directory path to search for the YAML file. | |
Returns: | |
(Path): The path of the found YAML file. | |
""" | |
files = list(path.glob("*.yaml")) or list(path.rglob("*.yaml")) # try root level first and then recursive | |
assert files, f"No YAML file found in '{path.resolve()}'" | |
if len(files) > 1: | |
files = [f for f in files if f.stem == path.stem] # prefer *.yaml files that match | |
assert len(files) == 1, f"Expected 1 YAML file in '{path.resolve()}', but found {len(files)}.\n{files}" | |
return files[0] | |
def check_det_dataset(dataset, autodownload=True): | |
""" | |
Download, verify, and/or unzip a dataset if not found locally. | |
This function checks the availability of a specified dataset, and if not found, it has the option to download and | |
unzip the dataset. It then reads and parses the accompanying YAML data, ensuring key requirements are met and also | |
resolves paths related to the dataset. | |
Args: | |
dataset (str): Path to the dataset or dataset descriptor (like a YAML file). | |
autodownload (bool, optional): Whether to automatically download the dataset if not found. Defaults to True. | |
Returns: | |
(dict): Parsed dataset information and paths. | |
""" | |
file = check_file(dataset) | |
# Download (optional) | |
extract_dir = "" | |
if zipfile.is_zipfile(file) or is_tarfile(file): | |
new_dir = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False) | |
file = find_dataset_yaml(DATASETS_DIR / new_dir) | |
extract_dir, autodownload = file.parent, False | |
# Read YAML | |
data = yaml_load(file, append_filename=True) # dictionary | |
# Checks | |
for k in "train", "val": | |
if k not in data: | |
if k != "val" or "validation" not in data: | |
raise SyntaxError( | |
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs.") | |
) | |
LOGGER.info("WARNING ⚠️ renaming data YAML 'validation' key to 'val' to match YOLO format.") | |
data["val"] = data.pop("validation") # replace 'validation' key with 'val' key | |
if "names" not in data and "nc" not in data: | |
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs.")) | |
if "names" in data and "nc" in data and len(data["names"]) != data["nc"]: | |
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match.")) | |
if "names" not in data: | |
data["names"] = [f"class_{i}" for i in range(data["nc"])] | |
else: | |
data["nc"] = len(data["names"]) | |
data["names"] = check_class_names(data["names"]) | |
# Resolve paths | |
path = Path(extract_dir or data.get("path") or Path(data.get("yaml_file", "")).parent) # dataset root | |
if not path.is_absolute(): | |
path = (DATASETS_DIR / path).resolve() | |
# Set paths | |
data["path"] = path # download scripts | |
for k in "train", "val", "test": | |
if data.get(k): # prepend path | |
if isinstance(data[k], str): | |
x = (path / data[k]).resolve() | |
if not x.exists() and data[k].startswith("../"): | |
x = (path / data[k][3:]).resolve() | |
data[k] = str(x) | |
else: | |
data[k] = [str((path / x).resolve()) for x in data[k]] | |
# Parse YAML | |
val, s = (data.get(x) for x in ("val", "download")) | |
if val: | |
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path | |
if not all(x.exists() for x in val): | |
name = clean_url(dataset) # dataset name with URL auth stripped | |
m = f"\nDataset '{name}' images not found ⚠️, missing path '{[x for x in val if not x.exists()][0]}'" | |
if s and autodownload: | |
LOGGER.warning(m) | |
else: | |
m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'" | |
raise FileNotFoundError(m) | |
t = time.time() | |
r = None # success | |
if s.startswith("http") and s.endswith(".zip"): # URL | |
safe_download(url=s, dir=DATASETS_DIR, delete=True) | |
elif s.startswith("bash "): # bash script | |
LOGGER.info(f"Running {s} ...") | |
r = os.system(s) | |
else: # python script | |
exec(s, {"yaml": data}) | |
dt = f"({round(time.time() - t, 1)}s)" | |
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌" | |
LOGGER.info(f"Dataset download {s}\n") | |
check_font("Arial.ttf" if is_ascii(data["names"]) else "Arial.Unicode.ttf") # download fonts | |
return data # dictionary | |
def check_cls_dataset(dataset, split=""): | |
""" | |
Checks a classification dataset such as Imagenet. | |
This function accepts a `dataset` name and attempts to retrieve the corresponding dataset information. | |
If the dataset is not found locally, it attempts to download the dataset from the internet and save it locally. | |
Args: | |
dataset (str | Path): The name of the dataset. | |
split (str, optional): The split of the dataset. Either 'val', 'test', or ''. Defaults to ''. | |
Returns: | |
(dict): A dictionary containing the following keys: | |
- 'train' (Path): The directory path containing the training set of the dataset. | |
- 'val' (Path): The directory path containing the validation set of the dataset. | |
- 'test' (Path): The directory path containing the test set of the dataset. | |
- 'nc' (int): The number of classes in the dataset. | |
- 'names' (dict): A dictionary of class names in the dataset. | |
""" | |
# Download (optional if dataset=https://file.zip is passed directly) | |
if str(dataset).startswith(("http:/", "https:/")): | |
dataset = safe_download(dataset, dir=DATASETS_DIR, unzip=True, delete=False) | |
elif Path(dataset).suffix in (".zip", ".tar", ".gz"): | |
file = check_file(dataset) | |
dataset = safe_download(file, dir=DATASETS_DIR, unzip=True, delete=False) | |
dataset = Path(dataset) | |
data_dir = (dataset if dataset.is_dir() else (DATASETS_DIR / dataset)).resolve() | |
if not data_dir.is_dir(): | |
LOGGER.warning(f"\nDataset not found ⚠️, missing path {data_dir}, attempting download...") | |
t = time.time() | |
if str(dataset) == "imagenet": | |
subprocess.run(f"bash {ROOT / 'data/scripts/get_imagenet.sh'}", shell=True, check=True) | |
else: | |
url = f"https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip" | |
download(url, dir=data_dir.parent) | |
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n" | |
LOGGER.info(s) | |
train_set = data_dir / "train" | |
val_set = ( | |
data_dir / "val" | |
if (data_dir / "val").exists() | |
else data_dir / "validation" | |
if (data_dir / "validation").exists() | |
else None | |
) # data/test or data/val | |
test_set = data_dir / "test" if (data_dir / "test").exists() else None # data/val or data/test | |
if split == "val" and not val_set: | |
LOGGER.warning("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.") | |
elif split == "test" and not test_set: | |
LOGGER.warning("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.") | |
nc = len([x for x in (data_dir / "train").glob("*") if x.is_dir()]) # number of classes | |
names = [x.name for x in (data_dir / "train").iterdir() if x.is_dir()] # class names list | |
names = dict(enumerate(sorted(names))) | |
# Print to console | |
for k, v in {"train": train_set, "val": val_set, "test": test_set}.items(): | |
prefix = f'{colorstr(f"{k}:")} {v}...' | |
if v is None: | |
LOGGER.info(prefix) | |
else: | |
files = [path for path in v.rglob("*.*") if path.suffix[1:].lower() in IMG_FORMATS] | |
nf = len(files) # number of files | |
nd = len({file.parent for file in files}) # number of directories | |
if nf == 0: | |
if k == "train": | |
raise FileNotFoundError(emojis(f"{dataset} '{k}:' no training images found ❌ ")) | |
else: | |
LOGGER.warning(f"{prefix} found {nf} images in {nd} classes: WARNING ⚠️ no images found") | |
elif nd != nc: | |
LOGGER.warning(f"{prefix} found {nf} images in {nd} classes: ERROR ❌️ requires {nc} classes, not {nd}") | |
else: | |
LOGGER.info(f"{prefix} found {nf} images in {nd} classes ✅ ") | |
return {"train": train_set, "val": val_set, "test": test_set, "nc": nc, "names": names} | |
class HUBDatasetStats: | |
""" | |
A class for generating HUB dataset JSON and `-hub` dataset directory. | |
Args: | |
path (str): Path to data.yaml or data.zip (with data.yaml inside data.zip). Default is 'coco8.yaml'. | |
task (str): Dataset task. Options are 'detect', 'segment', 'pose', 'classify'. Default is 'detect'. | |
autodownload (bool): Attempt to download dataset if not found locally. Default is False. | |
Example: | |
Download *.zip files from https://github.com/ultralytics/hub/tree/main/example_datasets | |
i.e. https://github.com/ultralytics/hub/raw/main/example_datasets/coco8.zip for coco8.zip. | |
```python | |
from ultralytics.data.utils import HUBDatasetStats | |
stats = HUBDatasetStats('path/to/coco8.zip', task='detect') # detect dataset | |
stats = HUBDatasetStats('path/to/coco8-seg.zip', task='segment') # segment dataset | |
stats = HUBDatasetStats('path/to/coco8-pose.zip', task='pose') # pose dataset | |
stats = HUBDatasetStats('path/to/imagenet10.zip', task='classify') # classification dataset | |
stats.get_json(save=True) | |
stats.process_images() | |
``` | |
""" | |
def __init__(self, path="coco8.yaml", task="detect", autodownload=False): | |
"""Initialize class.""" | |
path = Path(path).resolve() | |
LOGGER.info(f"Starting HUB dataset checks for {path}....") | |
self.task = task # detect, segment, pose, classify | |
if self.task == "classify": | |
unzip_dir = unzip_file(path) | |
data = check_cls_dataset(unzip_dir) | |
data["path"] = unzip_dir | |
else: # detect, segment, pose | |
_, data_dir, yaml_path = self._unzip(Path(path)) | |
try: | |
# Load YAML with checks | |
data = yaml_load(yaml_path) | |
data["path"] = "" # strip path since YAML should be in dataset root for all HUB datasets | |
yaml_save(yaml_path, data) | |
data = check_det_dataset(yaml_path, autodownload) # dict | |
data["path"] = data_dir # YAML path should be set to '' (relative) or parent (absolute) | |
except Exception as e: | |
raise Exception("error/HUB/dataset_stats/init") from e | |
self.hub_dir = Path(f'{data["path"]}-hub') | |
self.im_dir = self.hub_dir / "images" | |
self.stats = {"nc": len(data["names"]), "names": list(data["names"].values())} # statistics dictionary | |
self.data = data | |
def _unzip(path): | |
"""Unzip data.zip.""" | |
if not str(path).endswith(".zip"): # path is data.yaml | |
return False, None, path | |
unzip_dir = unzip_file(path, path=path.parent) | |
assert unzip_dir.is_dir(), ( | |
f"Error unzipping {path}, {unzip_dir} not found. " f"path/to/abc.zip MUST unzip to path/to/abc/" | |
) | |
return True, str(unzip_dir), find_dataset_yaml(unzip_dir) # zipped, data_dir, yaml_path | |
def _hub_ops(self, f): | |
"""Saves a compressed image for HUB previews.""" | |
compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub | |
def get_json(self, save=False, verbose=False): | |
"""Return dataset JSON for Ultralytics HUB.""" | |
def _round(labels): | |
"""Update labels to integer class and 4 decimal place floats.""" | |
if self.task == "detect": | |
coordinates = labels["bboxes"] | |
elif self.task == "segment": | |
coordinates = [x.flatten() for x in labels["segments"]] | |
elif self.task == "pose": | |
n = labels["keypoints"].shape[0] | |
coordinates = np.concatenate((labels["bboxes"], labels["keypoints"].reshape(n, -1)), 1) | |
else: | |
raise ValueError("Undefined dataset task.") | |
zipped = zip(labels["cls"], coordinates) | |
return [[int(c[0]), *(round(float(x), 4) for x in points)] for c, points in zipped] | |
for split in "train", "val", "test": | |
self.stats[split] = None # predefine | |
path = self.data.get(split) | |
# Check split | |
if path is None: # no split | |
continue | |
files = [f for f in Path(path).rglob("*.*") if f.suffix[1:].lower() in IMG_FORMATS] # image files in split | |
if not files: # no images | |
continue | |
# Get dataset statistics | |
if self.task == "classify": | |
from torchvision.datasets import ImageFolder | |
dataset = ImageFolder(self.data[split]) | |
x = np.zeros(len(dataset.classes)).astype(int) | |
for im in dataset.imgs: | |
x[im[1]] += 1 | |
self.stats[split] = { | |
"instance_stats": {"total": len(dataset), "per_class": x.tolist()}, | |
"image_stats": {"total": len(dataset), "unlabelled": 0, "per_class": x.tolist()}, | |
"labels": [{Path(k).name: v} for k, v in dataset.imgs], | |
} | |
else: | |
from ultralytics.data import YOLODataset | |
dataset = YOLODataset(img_path=self.data[split], data=self.data, task=self.task) | |
x = np.array( | |
[ | |
np.bincount(label["cls"].astype(int).flatten(), minlength=self.data["nc"]) | |
for label in TQDM(dataset.labels, total=len(dataset), desc="Statistics") | |
] | |
) # shape(128x80) | |
self.stats[split] = { | |
"instance_stats": {"total": int(x.sum()), "per_class": x.sum(0).tolist()}, | |
"image_stats": { | |
"total": len(dataset), | |
"unlabelled": int(np.all(x == 0, 1).sum()), | |
"per_class": (x > 0).sum(0).tolist(), | |
}, | |
"labels": [{Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)], | |
} | |
# Save, print and return | |
if save: | |
self.hub_dir.mkdir(parents=True, exist_ok=True) # makes dataset-hub/ | |
stats_path = self.hub_dir / "stats.json" | |
LOGGER.info(f"Saving {stats_path.resolve()}...") | |
with open(stats_path, "w") as f: | |
json.dump(self.stats, f) # save stats.json | |
if verbose: | |
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False)) | |
return self.stats | |
def process_images(self): | |
"""Compress images for Ultralytics HUB.""" | |
from ultralytics.data import YOLODataset # ClassificationDataset | |
self.im_dir.mkdir(parents=True, exist_ok=True) # makes dataset-hub/images/ | |
for split in "train", "val", "test": | |
if self.data.get(split) is None: | |
continue | |
dataset = YOLODataset(img_path=self.data[split], data=self.data) | |
with ThreadPool(NUM_THREADS) as pool: | |
for _ in TQDM(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f"{split} images"): | |
pass | |
LOGGER.info(f"Done. All images saved to {self.im_dir}") | |
return self.im_dir | |
def compress_one_image(f, f_new=None, max_dim=1920, quality=50): | |
""" | |
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the Python | |
Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will not be | |
resized. | |
Args: | |
f (str): The path to the input image file. | |
f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten. | |
max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels. | |
quality (int, optional): The image compression quality as a percentage. Default is 50%. | |
Example: | |
```python | |
from pathlib import Path | |
from ultralytics.data.utils import compress_one_image | |
for f in Path('path/to/dataset').rglob('*.jpg'): | |
compress_one_image(f) | |
``` | |
""" | |
try: # use PIL | |
im = Image.open(f) | |
r = max_dim / max(im.height, im.width) # ratio | |
if r < 1.0: # image too large | |
im = im.resize((int(im.width * r), int(im.height * r))) | |
im.save(f_new or f, "JPEG", quality=quality, optimize=True) # save | |
except Exception as e: # use OpenCV | |
LOGGER.info(f"WARNING ⚠️ HUB ops PIL failure {f}: {e}") | |
im = cv2.imread(f) | |
im_height, im_width = im.shape[:2] | |
r = max_dim / max(im_height, im_width) # ratio | |
if r < 1.0: # image too large | |
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) | |
cv2.imwrite(str(f_new or f), im) | |
def autosplit(path=DATASETS_DIR / "coco8/images", weights=(0.9, 0.1, 0.0), annotated_only=False): | |
""" | |
Automatically split a dataset into train/val/test splits and save the resulting splits into autosplit_*.txt files. | |
Args: | |
path (Path, optional): Path to images directory. Defaults to DATASETS_DIR / 'coco8/images'. | |
weights (list | tuple, optional): Train, validation, and test split fractions. Defaults to (0.9, 0.1, 0.0). | |
annotated_only (bool, optional): If True, only images with an associated txt file are used. Defaults to False. | |
Example: | |
```python | |
from ultralytics.data.utils import autosplit | |
autosplit() | |
``` | |
""" | |
path = Path(path) # images dir | |
files = sorted(x for x in path.rglob("*.*") if x.suffix[1:].lower() in IMG_FORMATS) # image files only | |
n = len(files) # number of files | |
random.seed(0) # for reproducibility | |
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split | |
txt = ["autosplit_train.txt", "autosplit_val.txt", "autosplit_test.txt"] # 3 txt files | |
for x in txt: | |
if (path.parent / x).exists(): | |
(path.parent / x).unlink() # remove existing | |
LOGGER.info(f"Autosplitting images from {path}" + ", using *.txt labeled images only" * annotated_only) | |
for i, img in TQDM(zip(indices, files), total=n): | |
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label | |
with open(path.parent / txt[i], "a") as f: | |
f.write(f"./{img.relative_to(path.parent).as_posix()}" + "\n") # add image to txt file | |