File size: 30,667 Bytes
53ad959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""
Ultralytics Results, Boxes and Masks classes for handling inference results.

Usage: See https://docs.ultralytics.com/modes/predict/
"""

from copy import deepcopy
from functools import lru_cache
from pathlib import Path

import numpy as np
import torch

from ultralytics.data.augment import LetterBox
from ultralytics.utils import LOGGER, SimpleClass, ops
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from ultralytics.utils.torch_utils import smart_inference_mode


class BaseTensor(SimpleClass):
    """Base tensor class with additional methods for easy manipulation and device handling."""

    def __init__(self, data, orig_shape) -> None:
        """
        Initialize BaseTensor with data and original shape.

        Args:
            data (torch.Tensor | np.ndarray): Predictions, such as bboxes, masks and keypoints.
            orig_shape (tuple): Original shape of image.
        """
        assert isinstance(data, (torch.Tensor, np.ndarray))
        self.data = data
        self.orig_shape = orig_shape

    @property
    def shape(self):
        """Return the shape of the data tensor."""
        return self.data.shape

    def cpu(self):
        """Return a copy of the tensor on CPU memory."""
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)

    def numpy(self):
        """Return a copy of the tensor as a numpy array."""
        return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)

    def cuda(self):
        """Return a copy of the tensor on GPU memory."""
        return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)

    def to(self, *args, **kwargs):
        """Return a copy of the tensor with the specified device and dtype."""
        return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)

    def __len__(self):  # override len(results)
        """Return the length of the data tensor."""
        return len(self.data)

    def __getitem__(self, idx):
        """Return a BaseTensor with the specified index of the data tensor."""
        return self.__class__(self.data[idx], self.orig_shape)


class Results(SimpleClass):
    """
    A class for storing and manipulating inference results.

    Attributes:
        orig_img (numpy.ndarray): Original image as a numpy array.
        orig_shape (tuple): Original image shape in (height, width) format.
        boxes (Boxes, optional): Object containing detection bounding boxes.
        masks (Masks, optional): Object containing detection masks.
        probs (Probs, optional): Object containing class probabilities for classification tasks.
        keypoints (Keypoints, optional): Object containing detected keypoints for each object.
        speed (dict): Dictionary of preprocess, inference, and postprocess speeds (ms/image).
        names (dict): Dictionary of class names.
        path (str): Path to the image file.

    Methods:
        update(boxes=None, masks=None, probs=None, obb=None): Updates object attributes with new detection results.
        cpu(): Returns a copy of the Results object with all tensors on CPU memory.
        numpy(): Returns a copy of the Results object with all tensors as numpy arrays.
        cuda(): Returns a copy of the Results object with all tensors on GPU memory.
        to(*args, **kwargs): Returns a copy of the Results object with tensors on a specified device and dtype.
        new(): Returns a new Results object with the same image, path, and names.
        plot(...): Plots detection results on an input image, returning an annotated image.
        show(): Show annotated results to screen.
        save(filename): Save annotated results to file.
        verbose(): Returns a log string for each task, detailing detections and classifications.
        save_txt(txt_file, save_conf=False): Saves detection results to a text file.
        save_crop(save_dir, file_name=Path("im.jpg")): Saves cropped detection images.
        tojson(normalize=False): Converts detection results to JSON format.
    """

    def __init__(self, orig_img, path, names, boxes=None, masks=None, probs=None, keypoints=None, obb=None) -> None:
        """
        Initialize the Results class.

        Args:
            orig_img (numpy.ndarray): The original image as a numpy array.
            path (str): The path to the image file.
            names (dict): A dictionary of class names.
            boxes (torch.tensor, optional): A 2D tensor of bounding box coordinates for each detection.
            masks (torch.tensor, optional): A 3D tensor of detection masks, where each mask is a binary image.
            probs (torch.tensor, optional): A 1D tensor of probabilities of each class for classification task.
            keypoints (torch.tensor, optional): A 2D tensor of keypoint coordinates for each detection.
            obb (torch.tensor, optional): A 2D tensor of oriented bounding box coordinates for each detection.
        """
        self.orig_img = orig_img
        self.orig_shape = orig_img.shape[:2]
        self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None  # native size boxes
        self.masks = Masks(masks, self.orig_shape) if masks is not None else None  # native size or imgsz masks
        self.probs = Probs(probs) if probs is not None else None
        self.keypoints = Keypoints(keypoints, self.orig_shape) if keypoints is not None else None
        self.obb = OBB(obb, self.orig_shape) if obb is not None else None
        self.speed = {"preprocess": None, "inference": None, "postprocess": None}  # milliseconds per image
        self.names = names
        self.path = path
        self.save_dir = None
        self._keys = "boxes", "masks", "probs", "keypoints", "obb"

    def __getitem__(self, idx):
        """Return a Results object for the specified index."""
        return self._apply("__getitem__", idx)

    def __len__(self):
        """Return the number of detections in the Results object."""
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                return len(v)

    def update(self, boxes=None, masks=None, probs=None, obb=None):
        """Update the boxes, masks, and probs attributes of the Results object."""
        if boxes is not None:
            self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
        if masks is not None:
            self.masks = Masks(masks, self.orig_shape)
        if probs is not None:
            self.probs = probs
        if obb is not None:
            self.obb = OBB(obb, self.orig_shape)

    def _apply(self, fn, *args, **kwargs):
        """
        Applies a function to all non-empty attributes and returns a new Results object with modified attributes. This
        function is internally called by methods like .to(), .cuda(), .cpu(), etc.

        Args:
            fn (str): The name of the function to apply.
            *args: Variable length argument list to pass to the function.
            **kwargs: Arbitrary keyword arguments to pass to the function.

        Returns:
            Results: A new Results object with attributes modified by the applied function.
        """
        r = self.new()
        for k in self._keys:
            v = getattr(self, k)
            if v is not None:
                setattr(r, k, getattr(v, fn)(*args, **kwargs))
        return r

    def cpu(self):
        """Return a copy of the Results object with all tensors on CPU memory."""
        return self._apply("cpu")

    def numpy(self):
        """Return a copy of the Results object with all tensors as numpy arrays."""
        return self._apply("numpy")

    def cuda(self):
        """Return a copy of the Results object with all tensors on GPU memory."""
        return self._apply("cuda")

    def to(self, *args, **kwargs):
        """Return a copy of the Results object with tensors on the specified device and dtype."""
        return self._apply("to", *args, **kwargs)

    def new(self):
        """Return a new Results object with the same image, path, and names."""
        return Results(orig_img=self.orig_img, path=self.path, names=self.names)

    def plot(
        self,
        conf=True,
        line_width=None,
        font_size=None,
        font="Arial.ttf",
        pil=False,
        img=None,
        im_gpu=None,
        kpt_radius=5,
        kpt_line=True,
        labels=True,
        boxes=True,
        masks=True,
        probs=True,
        show=False,
        save=False,
        filename=None,
    ):
        """
        Plots the detection results on an input RGB image. Accepts a numpy array (cv2) or a PIL Image.

        Args:
            conf (bool): Whether to plot the detection confidence score.
            line_width (float, optional): The line width of the bounding boxes. If None, it is scaled to the image size.
            font_size (float, optional): The font size of the text. If None, it is scaled to the image size.
            font (str): The font to use for the text.
            pil (bool): Whether to return the image as a PIL Image.
            img (numpy.ndarray): Plot to another image. if not, plot to original image.
            im_gpu (torch.Tensor): Normalized image in gpu with shape (1, 3, 640, 640), for faster mask plotting.
            kpt_radius (int, optional): Radius of the drawn keypoints. Default is 5.
            kpt_line (bool): Whether to draw lines connecting keypoints.
            labels (bool): Whether to plot the label of bounding boxes.
            boxes (bool): Whether to plot the bounding boxes.
            masks (bool): Whether to plot the masks.
            probs (bool): Whether to plot classification probability
            show (bool): Whether to display the annotated image directly.
            save (bool): Whether to save the annotated image to `filename`.
            filename (str): Filename to save image to if save is True.

        Returns:
            (numpy.ndarray): A numpy array of the annotated image.

        Example:
            ```python
            from PIL import Image
            from ultralytics import YOLO

            model = YOLO('yolov8n.pt')
            results = model('bus.jpg')  # results list
            for r in results:
                im_array = r.plot()  # plot a BGR numpy array of predictions
                im = Image.fromarray(im_array[..., ::-1])  # RGB PIL image
                im.show()  # show image
                im.save('results.jpg')  # save image
            ```
        """
        if img is None and isinstance(self.orig_img, torch.Tensor):
            img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()

        names = self.names
        is_obb = self.obb is not None
        pred_boxes, show_boxes = self.obb if is_obb else self.boxes, boxes
        pred_masks, show_masks = self.masks, masks
        pred_probs, show_probs = self.probs, probs
        annotator = Annotator(
            deepcopy(self.orig_img if img is None else img),
            line_width,
            font_size,
            font,
            pil or (pred_probs is not None and show_probs),  # Classify tasks default to pil=True
            example=names,
        )

        # Plot Segment results
        if pred_masks and show_masks:
            if im_gpu is None:
                img = LetterBox(pred_masks.shape[1:])(image=annotator.result())
                im_gpu = (
                    torch.as_tensor(img, dtype=torch.float16, device=pred_masks.data.device)
                    .permute(2, 0, 1)
                    .flip(0)
                    .contiguous()
                    / 255
                )
            idx = pred_boxes.cls if pred_boxes else range(len(pred_masks))
            annotator.masks(pred_masks.data, colors=[colors(x, True) for x in idx], im_gpu=im_gpu)

        # Plot Detect results
        if pred_boxes is not None and show_boxes:
            for d in reversed(pred_boxes):
                c, conf, id = int(d.cls), float(d.conf) if conf else None, None if d.id is None else int(d.id.item())
                name = ("" if id is None else f"id:{id} ") + names[c]
                label = (f"{name} {conf:.2f}" if conf else name) if labels else None
                box = d.xyxyxyxy.reshape(-1, 4, 2).squeeze() if is_obb else d.xyxy.squeeze()
                annotator.box_label(box, label, color=colors(c, True), rotated=is_obb)

        # Plot Classify results
        if pred_probs is not None and show_probs:
            text = ",\n".join(f"{names[j] if names else j} {pred_probs.data[j]:.2f}" for j in pred_probs.top5)
            x = round(self.orig_shape[0] * 0.03)
            annotator.text([x, x], text, txt_color=(255, 255, 255))  # TODO: allow setting colors

        # Plot Pose results
        if self.keypoints is not None:
            for k in reversed(self.keypoints.data):
                annotator.kpts(k, self.orig_shape, radius=kpt_radius, kpt_line=kpt_line)

        # Show results
        if show:
            annotator.show(self.path)

        # Save results
        if save:
            annotator.save(filename)

        return annotator.result()

    def show(self, *args, **kwargs):
        """Show annotated results image."""
        self.plot(show=True, *args, **kwargs)

    def save(self, filename=None, *args, **kwargs):
        """Save annotated results image."""
        if not filename:
            filename = f"results_{Path(self.path).name}"
        self.plot(save=True, filename=filename, *args, **kwargs)
        return filename

    def verbose(self):
        """Return log string for each task."""
        log_string = ""
        probs = self.probs
        boxes = self.boxes
        if len(self) == 0:
            return log_string if probs is not None else f"{log_string}(no detections), "
        if probs is not None:
            log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
        if boxes:
            for c in boxes.cls.unique():
                n = (boxes.cls == c).sum()  # detections per class
                log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
        return log_string

    def save_txt(self, txt_file, save_conf=False):
        """
        Save predictions into txt file.

        Args:
            txt_file (str): txt file path.
            save_conf (bool): save confidence score or not.
        """
        is_obb = self.obb is not None
        boxes = self.obb if is_obb else self.boxes
        masks = self.masks
        probs = self.probs
        kpts = self.keypoints
        texts = []
        if probs is not None:
            # Classify
            [texts.append(f"{probs.data[j]:.2f} {self.names[j]}") for j in probs.top5]
        elif boxes:
            # Detect/segment/pose
            for j, d in enumerate(boxes):
                c, conf, id = int(d.cls), float(d.conf), None if d.id is None else int(d.id.item())
                line = (c, *(d.xyxyxyxyn.view(-1) if is_obb else d.xywhn.view(-1)))
                if masks:
                    seg = masks[j].xyn[0].copy().reshape(-1)  # reversed mask.xyn, (n,2) to (n*2)
                    line = (c, *seg)
                if kpts is not None:
                    kpt = torch.cat((kpts[j].xyn, kpts[j].conf[..., None]), 2) if kpts[j].has_visible else kpts[j].xyn
                    line += (*kpt.reshape(-1).tolist(),)
                line += (conf,) * save_conf + (() if id is None else (id,))
                texts.append(("%g " * len(line)).rstrip() % line)

        if texts:
            Path(txt_file).parent.mkdir(parents=True, exist_ok=True)  # make directory
            with open(txt_file, "a") as f:
                f.writelines(text + "\n" for text in texts)

    def save_crop(self, save_dir, file_name=Path("im.jpg")):
        """
        Save cropped predictions to `save_dir/cls/file_name.jpg`.

        Args:
            save_dir (str | pathlib.Path): Save path.
            file_name (str | pathlib.Path): File name.
        """
        if self.probs is not None:
            LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
            return
        if self.obb is not None:
            LOGGER.warning("WARNING ⚠️ OBB task do not support `save_crop`.")
            return
        for d in self.boxes:
            save_one_box(
                d.xyxy,
                self.orig_img.copy(),
                file=Path(save_dir) / self.names[int(d.cls)] / f"{Path(file_name)}.jpg",
                BGR=True,
            )

    def summary(self, normalize=False, decimals=5):
        """Convert the results to a summarized format."""
        if self.probs is not None:
            LOGGER.warning("Warning: Classify results do not support the `summary()` method yet.")
            return

        # Create list of detection dictionaries
        results = []
        data = self.boxes.data.cpu().tolist()
        h, w = self.orig_shape if normalize else (1, 1)
        for i, row in enumerate(data):  # xyxy, track_id if tracking, conf, class_id
            box = {
                "x1": round(row[0] / w, decimals),
                "y1": round(row[1] / h, decimals),
                "x2": round(row[2] / w, decimals),
                "y2": round(row[3] / h, decimals),
            }
            conf = round(row[-2], decimals)
            class_id = int(row[-1])
            result = {"name": self.names[class_id], "class": class_id, "confidence": conf, "box": box}
            if self.boxes.is_track:
                result["track_id"] = int(row[-3])  # track ID
            if self.masks:
                result["segments"] = {
                    "x": (self.masks.xy[i][:, 0] / w).round(decimals).tolist(),
                    "y": (self.masks.xy[i][:, 1] / h).round(decimals).tolist(),
                }
            if self.keypoints is not None:
                x, y, visible = self.keypoints[i].data[0].cpu().unbind(dim=1)  # torch Tensor
                result["keypoints"] = {
                    "x": (x / w).numpy().round(decimals).tolist(),  # decimals named argument required
                    "y": (y / h).numpy().round(decimals).tolist(),
                    "visible": visible.numpy().round(decimals).tolist(),
                }
            results.append(result)

        return results

    def tojson(self, normalize=False, decimals=5):
        """Convert the results to JSON format."""
        import json

        return json.dumps(self.summary(normalize=normalize, decimals=decimals), indent=2)


class Boxes(BaseTensor):
    """
    Manages detection boxes, providing easy access and manipulation of box coordinates, confidence scores, class
    identifiers, and optional tracking IDs. Supports multiple formats for box coordinates, including both absolute and
    normalized forms.

    Attributes:
        data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
        orig_shape (tuple): The original image size as a tuple (height, width), used for normalization.
        is_track (bool): Indicates whether tracking IDs are included in the box data.

    Properties:
        xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
        conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
        cls (torch.Tensor | numpy.ndarray): Class labels for each box.
        id (torch.Tensor | numpy.ndarray, optional): Tracking IDs for each box, if available.
        xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format, calculated on demand.
        xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes, relative to `orig_shape`.
        xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes, relative to `orig_shape`.

    Methods:
        cpu(): Moves the boxes to CPU memory.
        numpy(): Converts the boxes to a numpy array format.
        cuda(): Moves the boxes to CUDA (GPU) memory.
        to(device, dtype=None): Moves the boxes to the specified device.
    """

    def __init__(self, boxes, orig_shape) -> None:
        """
        Initialize the Boxes class.

        Args:
            boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes, with
                shape (num_boxes, 6) or (num_boxes, 7). The last two columns contain confidence and class values.
                If present, the third last column contains track IDs.
            orig_shape (tuple): Original image size, in the format (height, width).
        """
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in (6, 7), f"expected 6 or 7 values but got {n}"  # xyxy, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 7
        self.orig_shape = orig_shape

    @property
    def xyxy(self):
        """Return the boxes in xyxy format."""
        return self.data[:, :4]

    @property
    def conf(self):
        """Return the confidence values of the boxes."""
        return self.data[:, -2]

    @property
    def cls(self):
        """Return the class values of the boxes."""
        return self.data[:, -1]

    @property
    def id(self):
        """Return the track IDs of the boxes (if available)."""
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)  # maxsize 1 should suffice
    def xywh(self):
        """Return the boxes in xywh format."""
        return ops.xyxy2xywh(self.xyxy)

    @property
    @lru_cache(maxsize=2)
    def xyxyn(self):
        """Return the boxes in xyxy format normalized by original image size."""
        xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
        xyxy[..., [0, 2]] /= self.orig_shape[1]
        xyxy[..., [1, 3]] /= self.orig_shape[0]
        return xyxy

    @property
    @lru_cache(maxsize=2)
    def xywhn(self):
        """Return the boxes in xywh format normalized by original image size."""
        xywh = ops.xyxy2xywh(self.xyxy)
        xywh[..., [0, 2]] /= self.orig_shape[1]
        xywh[..., [1, 3]] /= self.orig_shape[0]
        return xywh


class Masks(BaseTensor):
    """
    A class for storing and manipulating detection masks.

    Attributes:
        xy (list): A list of segments in pixel coordinates.
        xyn (list): A list of normalized segments.

    Methods:
        cpu(): Returns the masks tensor on CPU memory.
        numpy(): Returns the masks tensor as a numpy array.
        cuda(): Returns the masks tensor on GPU memory.
        to(device, dtype): Returns the masks tensor with the specified device and dtype.
    """

    def __init__(self, masks, orig_shape) -> None:
        """Initialize the Masks class with the given masks tensor and original image shape."""
        if masks.ndim == 2:
            masks = masks[None, :]
        super().__init__(masks, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """Return normalized segments."""
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
            for x in ops.masks2segments(self.data)
        ]

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """Return segments in pixel coordinates."""
        return [
            ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
            for x in ops.masks2segments(self.data)
        ]


class Keypoints(BaseTensor):
    """
    A class for storing and manipulating detection keypoints.

    Attributes:
        xy (torch.Tensor): A collection of keypoints containing x, y coordinates for each detection.
        xyn (torch.Tensor): A normalized version of xy with coordinates in the range [0, 1].
        conf (torch.Tensor): Confidence values associated with keypoints if available, otherwise None.

    Methods:
        cpu(): Returns a copy of the keypoints tensor on CPU memory.
        numpy(): Returns a copy of the keypoints tensor as a numpy array.
        cuda(): Returns a copy of the keypoints tensor on GPU memory.
        to(device, dtype): Returns a copy of the keypoints tensor with the specified device and dtype.
    """

    @smart_inference_mode()  # avoid keypoints < conf in-place error
    def __init__(self, keypoints, orig_shape) -> None:
        """Initializes the Keypoints object with detection keypoints and original image size."""
        if keypoints.ndim == 2:
            keypoints = keypoints[None, :]
        if keypoints.shape[2] == 3:  # x, y, conf
            mask = keypoints[..., 2] < 0.5  # points with conf < 0.5 (not visible)
            keypoints[..., :2][mask] = 0
        super().__init__(keypoints, orig_shape)
        self.has_visible = self.data.shape[-1] == 3

    @property
    @lru_cache(maxsize=1)
    def xy(self):
        """Returns x, y coordinates of keypoints."""
        return self.data[..., :2]

    @property
    @lru_cache(maxsize=1)
    def xyn(self):
        """Returns normalized x, y coordinates of keypoints."""
        xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
        xy[..., 0] /= self.orig_shape[1]
        xy[..., 1] /= self.orig_shape[0]
        return xy

    @property
    @lru_cache(maxsize=1)
    def conf(self):
        """Returns confidence values of keypoints if available, else None."""
        return self.data[..., 2] if self.has_visible else None


class Probs(BaseTensor):
    """
    A class for storing and manipulating classification predictions.

    Attributes:
        top1 (int): Index of the top 1 class.
        top5 (list[int]): Indices of the top 5 classes.
        top1conf (torch.Tensor): Confidence of the top 1 class.
        top5conf (torch.Tensor): Confidences of the top 5 classes.

    Methods:
        cpu(): Returns a copy of the probs tensor on CPU memory.
        numpy(): Returns a copy of the probs tensor as a numpy array.
        cuda(): Returns a copy of the probs tensor on GPU memory.
        to(): Returns a copy of the probs tensor with the specified device and dtype.
    """

    def __init__(self, probs, orig_shape=None) -> None:
        """Initialize the Probs class with classification probabilities and optional original shape of the image."""
        super().__init__(probs, orig_shape)

    @property
    @lru_cache(maxsize=1)
    def top1(self):
        """Return the index of top 1."""
        return int(self.data.argmax())

    @property
    @lru_cache(maxsize=1)
    def top5(self):
        """Return the indices of top 5."""
        return (-self.data).argsort(0)[:5].tolist()  # this way works with both torch and numpy.

    @property
    @lru_cache(maxsize=1)
    def top1conf(self):
        """Return the confidence of top 1."""
        return self.data[self.top1]

    @property
    @lru_cache(maxsize=1)
    def top5conf(self):
        """Return the confidences of top 5."""
        return self.data[self.top5]


class OBB(BaseTensor):
    """
    A class for storing and manipulating Oriented Bounding Boxes (OBB).

    Args:
        boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
            with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
            If present, the third last column contains track IDs, and the fifth column from the left contains rotation.
        orig_shape (tuple): Original image size, in the format (height, width).

    Attributes:
        xywhr (torch.Tensor | numpy.ndarray): The boxes in [x_center, y_center, width, height, rotation] format.
        conf (torch.Tensor | numpy.ndarray): The confidence values of the boxes.
        cls (torch.Tensor | numpy.ndarray): The class values of the boxes.
        id (torch.Tensor | numpy.ndarray): The track IDs of the boxes (if available).
        xyxyxyxyn (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format normalized by orig image size.
        xyxyxyxy (torch.Tensor | numpy.ndarray): The rotated boxes in xyxyxyxy format.
        xyxy (torch.Tensor | numpy.ndarray): The horizontal boxes in xyxyxyxy format.
        data (torch.Tensor): The raw OBB tensor (alias for `boxes`).

    Methods:
        cpu(): Move the object to CPU memory.
        numpy(): Convert the object to a numpy array.
        cuda(): Move the object to CUDA memory.
        to(*args, **kwargs): Move the object to the specified device.
    """

    def __init__(self, boxes, orig_shape) -> None:
        """Initialize the Boxes class."""
        if boxes.ndim == 1:
            boxes = boxes[None, :]
        n = boxes.shape[-1]
        assert n in (7, 8), f"expected 7 or 8 values but got {n}"  # xywh, rotation, track_id, conf, cls
        super().__init__(boxes, orig_shape)
        self.is_track = n == 8
        self.orig_shape = orig_shape

    @property
    def xywhr(self):
        """Return the rotated boxes in xywhr format."""
        return self.data[:, :5]

    @property
    def conf(self):
        """Return the confidence values of the boxes."""
        return self.data[:, -2]

    @property
    def cls(self):
        """Return the class values of the boxes."""
        return self.data[:, -1]

    @property
    def id(self):
        """Return the track IDs of the boxes (if available)."""
        return self.data[:, -3] if self.is_track else None

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxy(self):
        """Return the boxes in xyxyxyxy format, (N, 4, 2)."""
        return ops.xywhr2xyxyxyxy(self.xywhr)

    @property
    @lru_cache(maxsize=2)
    def xyxyxyxyn(self):
        """Return the boxes in xyxyxyxy format, (N, 4, 2)."""
        xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
        xyxyxyxyn[..., 0] /= self.orig_shape[1]
        xyxyxyxyn[..., 1] /= self.orig_shape[0]
        return xyxyxyxyn

    @property
    @lru_cache(maxsize=2)
    def xyxy(self):
        """
        Return the horizontal boxes in xyxy format, (N, 4).

        Accepts both torch and numpy boxes.
        """
        x1 = self.xyxyxyxy[..., 0].min(1).values
        x2 = self.xyxyxyxy[..., 0].max(1).values
        y1 = self.xyxyxyxy[..., 1].min(1).values
        y2 = self.xyxyxyxy[..., 1].max(1).values
        xyxy = [x1, y1, x2, y2]
        return np.stack(xyxy, axis=-1) if isinstance(self.data, np.ndarray) else torch.stack(xyxy, dim=-1)