File size: 11,267 Bytes
53ad959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Ultralytics YOLO 🚀, AGPL-3.0 license

from collections import defaultdict

import cv2

from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator, colors

check_requirements("shapely>=2.0.0")

from shapely.geometry import LineString, Point, Polygon


class ObjectCounter:
    """A class to manage the counting of objects in a real-time video stream based on their tracks."""

    def __init__(self):
        """Initializes the Counter with default values for various tracking and counting parameters."""

        # Mouse events
        self.is_drawing = False
        self.selected_point = None

        # Region & Line Information
        self.reg_pts = [(20, 400), (1260, 400)]
        self.line_dist_thresh = 15
        self.counting_region = None
        self.region_color = (255, 0, 255)
        self.region_thickness = 5

        # Image and annotation Information
        self.im0 = None
        self.tf = None
        self.view_img = False
        self.view_in_counts = True
        self.view_out_counts = True

        self.names = None  # Classes names
        self.annotator = None  # Annotator
        self.window_name = "Ultralytics YOLOv8 Object Counter"

        # Object counting Information
        self.in_counts = 0
        self.out_counts = 0
        self.counting_dict = {}
        self.count_txt_thickness = 0
        self.count_txt_color = (0, 0, 0)
        self.count_color = (255, 255, 255)

        # Tracks info
        self.track_history = defaultdict(list)
        self.track_thickness = 2
        self.draw_tracks = False
        self.track_color = (0, 255, 0)

        # Check if environment support imshow
        self.env_check = check_imshow(warn=True)

    def set_args(
        self,
        classes_names,
        reg_pts,
        count_reg_color=(255, 0, 255),
        line_thickness=2,
        track_thickness=2,
        view_img=False,
        view_in_counts=True,
        view_out_counts=True,
        draw_tracks=False,
        count_txt_thickness=2,
        count_txt_color=(0, 0, 0),
        count_color=(255, 255, 255),
        track_color=(0, 255, 0),
        region_thickness=5,
        line_dist_thresh=15,
    ):
        """
        Configures the Counter's image, bounding box line thickness, and counting region points.

        Args:
            line_thickness (int): Line thickness for bounding boxes.
            view_img (bool): Flag to control whether to display the video stream.
            view_in_counts (bool): Flag to control whether to display the incounts on video stream.
            view_out_counts (bool): Flag to control whether to display the outcounts on video stream.
            reg_pts (list): Initial list of points defining the counting region.
            classes_names (dict): Classes names
            track_thickness (int): Track thickness
            draw_tracks (Bool): draw tracks
            count_txt_thickness (int): Text thickness for object counting display
            count_txt_color (RGB color): count text color value
            count_color (RGB color): count text background color value
            count_reg_color (RGB color): Color of object counting region
            track_color (RGB color): color for tracks
            region_thickness (int): Object counting Region thickness
            line_dist_thresh (int): Euclidean Distance threshold for line counter
        """
        self.tf = line_thickness
        self.view_img = view_img
        self.view_in_counts = view_in_counts
        self.view_out_counts = view_out_counts
        self.track_thickness = track_thickness
        self.draw_tracks = draw_tracks

        # Region and line selection
        if len(reg_pts) == 2:
            print("Line Counter Initiated.")
            self.reg_pts = reg_pts
            self.counting_region = LineString(self.reg_pts)
        elif len(reg_pts) >= 3:
            print("Region Counter Initiated.")
            self.reg_pts = reg_pts
            self.counting_region = Polygon(self.reg_pts)
        else:
            print("Invalid Region points provided, region_points must be 2 for lines or >= 3 for polygons.")
            print("Using Line Counter Now")
            self.counting_region = LineString(self.reg_pts)

        self.names = classes_names
        self.track_color = track_color
        self.count_txt_thickness = count_txt_thickness
        self.count_txt_color = count_txt_color
        self.count_color = count_color
        self.region_color = count_reg_color
        self.region_thickness = region_thickness
        self.line_dist_thresh = line_dist_thresh

    def mouse_event_for_region(self, event, x, y, flags, params):
        """
        This function is designed to move region with mouse events in a real-time video stream.

        Args:
            event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
            x (int): The x-coordinate of the mouse pointer.
            y (int): The y-coordinate of the mouse pointer.
            flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY,
                cv2.EVENT_FLAG_SHIFTKEY, etc.).
            params (dict): Additional parameters you may want to pass to the function.
        """
        if event == cv2.EVENT_LBUTTONDOWN:
            for i, point in enumerate(self.reg_pts):
                if (
                    isinstance(point, (tuple, list))
                    and len(point) >= 2
                    and (abs(x - point[0]) < 10 and abs(y - point[1]) < 10)
                ):
                    self.selected_point = i
                    self.is_drawing = True
                    break

        elif event == cv2.EVENT_MOUSEMOVE:
            if self.is_drawing and self.selected_point is not None:
                self.reg_pts[self.selected_point] = (x, y)
                self.counting_region = Polygon(self.reg_pts)

        elif event == cv2.EVENT_LBUTTONUP:
            self.is_drawing = False
            self.selected_point = None

    def extract_and_process_tracks(self, tracks):
        """Extracts and processes tracks for object counting in a video stream."""

        # Annotator Init and region drawing
        self.annotator = Annotator(self.im0, self.tf, self.names)

        if tracks[0].boxes.id is not None:
            boxes = tracks[0].boxes.xyxy.cpu()
            clss = tracks[0].boxes.cls.cpu().tolist()
            track_ids = tracks[0].boxes.id.int().cpu().tolist()

            # Extract tracks
            for box, track_id, cls in zip(boxes, track_ids, clss):
                # Draw bounding box
                self.annotator.box_label(box, label=f"{track_id}:{self.names[cls]}", color=colors(int(track_id), True))

                # Draw Tracks
                track_line = self.track_history[track_id]
                track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
                if len(track_line) > 30:
                    track_line.pop(0)

                # Draw track trails
                if self.draw_tracks:
                    self.annotator.draw_centroid_and_tracks(
                        track_line, color=self.track_color, track_thickness=self.track_thickness
                    )

                prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
                centroid = Point((box[:2] + box[2:]) / 2)

                # Count objects
                if len(self.reg_pts) >= 3:  # any polygon
                    is_inside = self.counting_region.contains(centroid)
                    current_position = "in" if is_inside else "out"

                    if prev_position is not None:
                        if self.counting_dict[track_id] != current_position and is_inside:
                            self.in_counts += 1
                            self.counting_dict[track_id] = "in"
                        elif self.counting_dict[track_id] != current_position and not is_inside:
                            self.out_counts += 1
                            self.counting_dict[track_id] = "out"
                        else:
                            self.counting_dict[track_id] = current_position

                    else:
                        self.counting_dict[track_id] = current_position

                elif len(self.reg_pts) == 2:
                    if prev_position is not None:
                        is_inside = (box[0] - prev_position[0]) * (
                            self.counting_region.centroid.x - prev_position[0]
                        ) > 0
                        current_position = "in" if is_inside else "out"

                        if self.counting_dict[track_id] != current_position and is_inside:
                            self.in_counts += 1
                            self.counting_dict[track_id] = "in"
                        elif self.counting_dict[track_id] != current_position and not is_inside:
                            self.out_counts += 1
                            self.counting_dict[track_id] = "out"
                        else:
                            self.counting_dict[track_id] = current_position
                    else:
                        self.counting_dict[track_id] = None

        incount_label = f"In Count : {self.in_counts}"
        outcount_label = f"OutCount : {self.out_counts}"

        # Display counts based on user choice
        counts_label = None
        if not self.view_in_counts and not self.view_out_counts:
            counts_label = None
        elif not self.view_in_counts:
            counts_label = outcount_label
        elif not self.view_out_counts:
            counts_label = incount_label
        else:
            counts_label = f"{incount_label} {outcount_label}"

        if counts_label is not None:
            self.annotator.count_labels(
                counts=counts_label,
                count_txt_size=self.count_txt_thickness,
                txt_color=self.count_txt_color,
                color=self.count_color,
            )

    def display_frames(self):
        """Display frame."""
        if self.env_check:
            self.annotator.draw_region(reg_pts=self.reg_pts, color=self.region_color, thickness=self.region_thickness)
            cv2.namedWindow(self.window_name)
            if len(self.reg_pts) == 4:  # only add mouse event If user drawn region
                cv2.setMouseCallback(self.window_name, self.mouse_event_for_region, {"region_points": self.reg_pts})
            cv2.imshow(self.window_name, self.im0)
            # Break Window
            if cv2.waitKey(1) & 0xFF == ord("q"):
                return

    def start_counting(self, im0, tracks):
        """
        Main function to start the object counting process.

        Args:
            im0 (ndarray): Current frame from the video stream.
            tracks (list): List of tracks obtained from the object tracking process.
        """
        self.im0 = im0  # store image
        self.extract_and_process_tracks(tracks)  # draw region even if no objects

        if self.view_img:
            self.display_frames()
        return self.im0


if __name__ == "__main__":
    ObjectCounter()