File size: 29,829 Bytes
53ad959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""Block modules."""

import torch
import torch.nn as nn
import torch.nn.functional as F

from .conv import Conv, DWConv, GhostConv, LightConv, RepConv, autopad
from .transformer import TransformerBlock
from ultralytics.utils.torch_utils import fuse_conv_and_bn

__all__ = (
    "DFL",
    "HGBlock",
    "HGStem",
    "SPP",
    "SPPF",
    "C1",
    "C2",
    "C3",
    "C2f",
    "C2fAttn",
    "ImagePoolingAttn",
    "ContrastiveHead",
    "BNContrastiveHead",
    "C3x",
    "C3TR",
    "C3Ghost",
    "GhostBottleneck",
    "Bottleneck",
    "BottleneckCSP",
    "Proto",
    "RepC3",
    "ResNetLayer",
    "RepNCSPELAN4",
    "ADown",
    "SPPELAN",
    "CBFuse",
    "CBLinear",
    "Silence",
)


class DFL(nn.Module):
    """
    Integral module of Distribution Focal Loss (DFL).

    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """

    def __init__(self, c1=16):
        """Initialize a convolutional layer with a given number of input channels."""
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1

    def forward(self, x):
        """Applies a transformer layer on input tensor 'x' and returns a tensor."""
        b, _, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
        # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)


class Proto(nn.Module):
    """YOLOv8 mask Proto module for segmentation models."""

    def __init__(self, c1, c_=256, c2=32):
        """
        Initializes the YOLOv8 mask Proto module with specified number of protos and masks.

        Input arguments are ch_in, number of protos, number of masks.
        """
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)

    def forward(self, x):
        """Performs a forward pass through layers using an upsampled input image."""
        return self.cv3(self.cv2(self.upsample(self.cv1(x))))


class HGStem(nn.Module):
    """
    StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2):
        """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
        super().__init__()
        self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
        self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
        self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
        self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
        self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
        self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        x = self.stem1(x)
        x = F.pad(x, [0, 1, 0, 1])
        x2 = self.stem2a(x)
        x2 = F.pad(x2, [0, 1, 0, 1])
        x2 = self.stem2b(x2)
        x1 = self.pool(x)
        x = torch.cat([x1, x2], dim=1)
        x = self.stem3(x)
        x = self.stem4(x)
        return x


class HGBlock(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.ec(self.sc(torch.cat(y, 1)))
        return y + x if self.add else y


class SPP(nn.Module):
    """Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""

    def __init__(self, c1, c2, k=(5, 9, 13)):
        """Initialize the SPP layer with input/output channels and pooling kernel sizes."""
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])

    def forward(self, x):
        """Forward pass of the SPP layer, performing spatial pyramid pooling."""
        x = self.cv1(x)
        return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))


class SPPF(nn.Module):
    """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""

    def __init__(self, c1, c2, k=5):
        """
        Initializes the SPPF layer with given input/output channels and kernel size.

        This module is equivalent to SPP(k=(5, 9, 13)).
        """
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        """Forward pass through Ghost Convolution block."""
        x = self.cv1(x)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))


class C1(nn.Module):
    """CSP Bottleneck with 1 convolution."""

    def __init__(self, c1, c2, n=1):
        """Initializes the CSP Bottleneck with configurations for 1 convolution with arguments ch_in, ch_out, number."""
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))

    def forward(self, x):
        """Applies cross-convolutions to input in the C3 module."""
        y = self.cv1(x)
        return self.m(y) + y


class C2(nn.Module):
    """CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes the CSP Bottleneck with 2 convolutions module with arguments ch_in, ch_out, number, shortcut,
        groups, expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c2, 1)  # optional act=FReLU(c2)
        # self.attention = ChannelAttention(2 * self.c)  # or SpatialAttention()
        self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        a, b = self.cv1(x).chunk(2, 1)
        return self.cv2(torch.cat((self.m(a), b), 1))


class C2f(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))


class C3(nn.Module):
    """CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through the CSP bottleneck with 2 convolutions."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


class C3x(C3):
    """C3 module with cross-convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize C3TR instance and set default parameters."""
        super().__init__(c1, c2, n, shortcut, g, e)
        self.c_ = int(c2 * e)
        self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))


class RepC3(nn.Module):
    """Rep C3."""

    def __init__(self, c1, c2, n=3, e=1.0):
        """Initialize CSP Bottleneck with a single convolution using input channels, output channels, and number."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c1, c2, 1, 1)
        self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
        self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()

    def forward(self, x):
        """Forward pass of RT-DETR neck layer."""
        return self.cv3(self.m(self.cv1(x)) + self.cv2(x))


class C3TR(C3):
    """C3 module with TransformerBlock()."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize C3Ghost module with GhostBottleneck()."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)
        self.m = TransformerBlock(c_, c_, 4, n)


class C3Ghost(C3):
    """C3 module with GhostBottleneck()."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))


class GhostBottleneck(nn.Module):
    """Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""

    def __init__(self, c1, c2, k=3, s=1):
        """Initializes GhostBottleneck module with arguments ch_in, ch_out, kernel, stride."""
        super().__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(
            GhostConv(c1, c_, 1, 1),  # pw
            DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
            GhostConv(c_, c2, 1, 1, act=False),  # pw-linear
        )
        self.shortcut = (
            nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
        )

    def forward(self, x):
        """Applies skip connection and concatenation to input tensor."""
        return self.conv(x) + self.shortcut(x)


class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class BottleneckCSP(nn.Module):
    """CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes the CSP Bottleneck given arguments for ch_in, ch_out, number, shortcut, groups, expansion."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
        self.cv4 = Conv(2 * c_, c2, 1, 1)
        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
        self.act = nn.SiLU()
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        """Applies a CSP bottleneck with 3 convolutions."""
        y1 = self.cv3(self.m(self.cv1(x)))
        y2 = self.cv2(x)
        return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))


class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))


class ResNetLayer(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


class MaxSigmoidAttnBlock(nn.Module):
    """Max Sigmoid attention block."""

    def __init__(self, c1, c2, nh=1, ec=128, gc=512, scale=False):
        """Initializes MaxSigmoidAttnBlock with specified arguments."""
        super().__init__()
        self.nh = nh
        self.hc = c2 // nh
        self.ec = Conv(c1, ec, k=1, act=False) if c1 != ec else None
        self.gl = nn.Linear(gc, ec)
        self.bias = nn.Parameter(torch.zeros(nh))
        self.proj_conv = Conv(c1, c2, k=3, s=1, act=False)
        self.scale = nn.Parameter(torch.ones(1, nh, 1, 1)) if scale else 1.0

    def forward(self, x, guide):
        """Forward process."""
        bs, _, h, w = x.shape

        guide = self.gl(guide)
        guide = guide.view(bs, -1, self.nh, self.hc)
        embed = self.ec(x) if self.ec is not None else x
        embed = embed.view(bs, self.nh, self.hc, h, w)

        aw = torch.einsum("bmchw,bnmc->bmhwn", embed, guide)
        aw = aw.max(dim=-1)[0]
        aw = aw / (self.hc**0.5)
        aw = aw + self.bias[None, :, None, None]
        aw = aw.sigmoid() * self.scale

        x = self.proj_conv(x)
        x = x.view(bs, self.nh, -1, h, w)
        x = x * aw.unsqueeze(2)
        return x.view(bs, -1, h, w)


class C2fAttn(nn.Module):
    """C2f module with an additional attn module."""

    def __init__(self, c1, c2, n=1, ec=128, nh=1, gc=512, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((3 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
        self.attn = MaxSigmoidAttnBlock(self.c, self.c, gc=gc, ec=ec, nh=nh)

    def forward(self, x, guide):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        y.append(self.attn(y[-1], guide))
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x, guide):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        y.append(self.attn(y[-1], guide))
        return self.cv2(torch.cat(y, 1))


class ImagePoolingAttn(nn.Module):
    """ImagePoolingAttn: Enhance the text embeddings with image-aware information."""

    def __init__(self, ec=256, ch=(), ct=512, nh=8, k=3, scale=False):
        """Initializes ImagePoolingAttn with specified arguments."""
        super().__init__()

        nf = len(ch)
        self.query = nn.Sequential(nn.LayerNorm(ct), nn.Linear(ct, ec))
        self.key = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
        self.value = nn.Sequential(nn.LayerNorm(ec), nn.Linear(ec, ec))
        self.proj = nn.Linear(ec, ct)
        self.scale = nn.Parameter(torch.tensor([0.0]), requires_grad=True) if scale else 1.0
        self.projections = nn.ModuleList([nn.Conv2d(in_channels, ec, kernel_size=1) for in_channels in ch])
        self.im_pools = nn.ModuleList([nn.AdaptiveMaxPool2d((k, k)) for _ in range(nf)])
        self.ec = ec
        self.nh = nh
        self.nf = nf
        self.hc = ec // nh
        self.k = k

    def forward(self, x, text):
        """Executes attention mechanism on input tensor x and guide tensor."""
        bs = x[0].shape[0]
        assert len(x) == self.nf
        num_patches = self.k**2
        x = [pool(proj(x)).view(bs, -1, num_patches) for (x, proj, pool) in zip(x, self.projections, self.im_pools)]
        x = torch.cat(x, dim=-1).transpose(1, 2)
        q = self.query(text)
        k = self.key(x)
        v = self.value(x)

        # q = q.reshape(1, text.shape[1], self.nh, self.hc).repeat(bs, 1, 1, 1)
        q = q.reshape(bs, -1, self.nh, self.hc)
        k = k.reshape(bs, -1, self.nh, self.hc)
        v = v.reshape(bs, -1, self.nh, self.hc)

        aw = torch.einsum("bnmc,bkmc->bmnk", q, k)
        aw = aw / (self.hc**0.5)
        aw = F.softmax(aw, dim=-1)

        x = torch.einsum("bmnk,bkmc->bnmc", aw, v)
        x = self.proj(x.reshape(bs, -1, self.ec))
        return x * self.scale + text


class ContrastiveHead(nn.Module):
    """Contrastive Head for YOLO-World compute the region-text scores according to the similarity between image and text
    features.
    """

    def __init__(self):
        """Initializes ContrastiveHead with specified region-text similarity parameters."""
        super().__init__()
        self.bias = nn.Parameter(torch.zeros([]))
        self.logit_scale = nn.Parameter(torch.ones([]) * torch.tensor(1 / 0.07).log())

    def forward(self, x, w):
        """Forward function of contrastive learning."""
        x = F.normalize(x, dim=1, p=2)
        w = F.normalize(w, dim=-1, p=2)
        x = torch.einsum("bchw,bkc->bkhw", x, w)
        return x * self.logit_scale.exp() + self.bias


class BNContrastiveHead(nn.Module):
    """
    Batch Norm Contrastive Head for YOLO-World using batch norm instead of l2-normalization.

    Args:
        embed_dims (int): Embed dimensions of text and image features.
    """

    def __init__(self, embed_dims: int):
        """Initialize ContrastiveHead with region-text similarity parameters."""
        super().__init__()
        self.norm = nn.BatchNorm2d(embed_dims)
        self.bias = nn.Parameter(torch.zeros([]))
        # use -1.0 is more stable
        self.logit_scale = nn.Parameter(-1.0 * torch.ones([]))

    def forward(self, x, w):
        """Forward function of contrastive learning."""
        x = self.norm(x)
        w = F.normalize(w, dim=-1, p=2)
        x = torch.einsum("bchw,bkc->bkhw", x, w)
        return x * self.logit_scale.exp() + self.bias


class RepBottleneck(nn.Module):
    """Rep bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a RepBottleneck module with customizable in/out channels, shortcut option, groups and expansion
        ratio.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = RepConv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Forward pass through RepBottleneck layer."""
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))


class RepCSP(nn.Module):
    """Rep CSP Bottleneck with 3 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        """Initializes RepCSP layer with given channels, repetitions, shortcut, groups and expansion ratio."""
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        """Forward pass through RepCSP layer."""
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))


class RepNCSPELAN4(nn.Module):
    """CSP-ELAN."""

    def __init__(self, c1, c2, c3, c4, n=1):
        """Initializes CSP-ELAN layer with specified channel sizes, repetitions, and convolutions."""
        super().__init__()
        self.c = c3 // 2
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.Sequential(RepCSP(c3 // 2, c4, n), Conv(c4, c4, 3, 1))
        self.cv3 = nn.Sequential(RepCSP(c4, c4, n), Conv(c4, c4, 3, 1))
        self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)

    def forward(self, x):
        """Forward pass through RepNCSPELAN4 layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
        return self.cv4(torch.cat(y, 1))


class ADown(nn.Module):
    """ADown."""

    def __init__(self, c1, c2):
        """Initializes ADown module with convolution layers to downsample input from channels c1 to c2."""
        super().__init__()
        self.c = c2 // 2
        self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
        self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)

    def forward(self, x):
        """Forward pass through ADown layer."""
        x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
        x1, x2 = x.chunk(2, 1)
        x1 = self.cv1(x1)
        x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
        x2 = self.cv2(x2)
        return torch.cat((x1, x2), 1)


class SPPELAN(nn.Module):
    """SPP-ELAN."""

    def __init__(self, c1, c2, c3, k=5):
        """Initializes SPP-ELAN block with convolution and max pooling layers for spatial pyramid pooling."""
        super().__init__()
        self.c = c3
        self.cv1 = Conv(c1, c3, 1, 1)
        self.cv2 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv3 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv4 = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.cv5 = Conv(4 * c3, c2, 1, 1)

    def forward(self, x):
        """Forward pass through SPPELAN layer."""
        y = [self.cv1(x)]
        y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
        return self.cv5(torch.cat(y, 1))


class Silence(nn.Module):
    """Silence."""

    def __init__(self):
        """Initializes the Silence module."""
        super(Silence, self).__init__()

    def forward(self, x):
        """Forward pass through Silence layer."""
        return x


class CBLinear(nn.Module):
    """CBLinear."""

    def __init__(self, c1, c2s, k=1, s=1, p=None, g=1):
        """Initializes the CBLinear module, passing inputs unchanged."""
        super(CBLinear, self).__init__()
        self.c2s = c2s
        self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)

    def forward(self, x):
        """Forward pass through CBLinear layer."""
        outs = self.conv(x).split(self.c2s, dim=1)
        return outs


class CBFuse(nn.Module):
    """CBFuse."""

    def __init__(self, idx):
        """Initializes CBFuse module with layer index for selective feature fusion."""
        super(CBFuse, self).__init__()
        self.idx = idx

    def forward(self, xs):
        """Forward pass through CBFuse layer."""
        target_size = xs[-1].shape[2:]
        res = [F.interpolate(x[self.idx[i]], size=target_size, mode="nearest") for i, x in enumerate(xs[:-1])]
        out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
        return out


class RepVGGDW(torch.nn.Module):
    def __init__(self, ed) -> None:
        super().__init__()
        self.conv = Conv(ed, ed, 7, 1, 3, g=ed, act=False)
        self.conv1 = Conv(ed, ed, 3, 1, 1, g=ed, act=False)
        self.dim = ed
        self.act = nn.SiLU()
    
    def forward(self, x):
        return self.act(self.conv(x) + self.conv1(x))
    
    def forward_fuse(self, x):
        return self.act(self.conv(x))

    @torch.no_grad()
    def fuse(self):
        conv = fuse_conv_and_bn(self.conv.conv, self.conv.bn)
        conv1 = fuse_conv_and_bn(self.conv1.conv, self.conv1.bn)
        
        conv_w = conv.weight
        conv_b = conv.bias
        conv1_w = conv1.weight
        conv1_b = conv1.bias
        
        conv1_w = torch.nn.functional.pad(conv1_w, [2,2,2,2])

        final_conv_w = conv_w + conv1_w
        final_conv_b = conv_b + conv1_b

        conv.weight.data.copy_(final_conv_w)
        conv.bias.data.copy_(final_conv_b)

        self.conv = conv
        del self.conv1

class CIB(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, e=0.5, lk=False):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = nn.Sequential(
            Conv(c1, c1, 3, g=c1),
            Conv(c1, 2 * c_, 1),
            Conv(2 * c_, 2 * c_, 3, g=2 * c_) if not lk else RepVGGDW(2 * c_),
            Conv(2 * c_, c2, 1),
            Conv(c2, c2, 3, g=c2),
        )

        self.add = shortcut and c1 == c2

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.cv1(x) if self.add else self.cv1(x)

class C2fCIB(C2f):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, lk=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(CIB(self.c, self.c, shortcut, e=1.0, lk=lk) for _ in range(n))


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8,
                 attn_ratio=0.5):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.key_dim = int(self.head_dim * attn_ratio)
        self.scale = self.key_dim ** -0.5
        nh_kd = nh_kd = self.key_dim * num_heads
        h = dim + nh_kd * 2
        self.qkv = Conv(dim, h, 1, act=False)
        self.proj = Conv(dim, dim, 1, act=False)
        self.pe = Conv(dim, dim, 3, 1, g=dim, act=False)

    def forward(self, x):
        B, C, H, W = x.shape
        N = H * W
        qkv = self.qkv(x)
        q, k, v = qkv.view(B, self.num_heads, self.key_dim*2 + self.head_dim, N).split([self.key_dim, self.key_dim, self.head_dim], dim=2)

        attn = (
            (q.transpose(-2, -1) @ k) * self.scale
        )
        attn = attn.softmax(dim=-1)
        x = (v @ attn.transpose(-2, -1)).view(B, C, H, W) + self.pe(v.reshape(B, C, H, W))
        x = self.proj(x)
        return x

class PSA(nn.Module):

    def __init__(self, c1, c2, e=0.5):
        super().__init__()
        assert(c1 == c2)
        self.c = int(c1 * e)
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv(2 * self.c, c1, 1)
        
        self.attn = Attention(self.c, attn_ratio=0.5, num_heads=self.c // 64)
        self.ffn = nn.Sequential(
            Conv(self.c, self.c*2, 1),
            Conv(self.c*2, self.c, 1, act=False)
        )
        
    def forward(self, x):
        a, b = self.cv1(x).split((self.c, self.c), dim=1)
        b = b + self.attn(b)
        b = b + self.ffn(b)
        return self.cv2(torch.cat((a, b), 1))

class SCDown(nn.Module):
    def __init__(self, c1, c2, k, s):
        super().__init__()
        self.cv1 = Conv(c1, c2, 1, 1)
        self.cv2 = Conv(c2, c2, k=k, s=s, g=c2, act=False)

    def forward(self, x):
        return self.cv2(self.cv1(x))