Spaces:
Sleeping
Sleeping
File size: 7,935 Bytes
53ad959 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
import math
from itertools import product
from typing import Any, Generator, List, Tuple
import numpy as np
import torch
def is_box_near_crop_edge(
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
) -> torch.Tensor:
"""Return a boolean tensor indicating if boxes are near the crop edge."""
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
return torch.any(near_crop_edge, dim=1)
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
"""Yield batches of data from the input arguments."""
assert args and all(len(a) == len(args[0]) for a in args), "Batched iteration must have same-size inputs."
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
for b in range(n_batches):
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
def calculate_stability_score(masks: torch.Tensor, mask_threshold: float, threshold_offset: float) -> torch.Tensor:
"""
Computes the stability score for a batch of masks.
The stability score is the IoU between the binary masks obtained by thresholding the predicted mask logits at high
and low values.
Notes:
- One mask is always contained inside the other.
- Save memory by preventing unnecessary cast to torch.int64
"""
intersections = (masks > (mask_threshold + threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
unions = (masks > (mask_threshold - threshold_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32)
return intersections / unions
def build_point_grid(n_per_side: int) -> np.ndarray:
"""Generate a 2D grid of evenly spaced points in the range [0,1]x[0,1]."""
offset = 1 / (2 * n_per_side)
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
return np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
def build_all_layer_point_grids(n_per_side: int, n_layers: int, scale_per_layer: int) -> List[np.ndarray]:
"""Generate point grids for all crop layers."""
return [build_point_grid(int(n_per_side / (scale_per_layer**i))) for i in range(n_layers + 1)]
def generate_crop_boxes(
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
) -> Tuple[List[List[int]], List[int]]:
"""
Generates a list of crop boxes of different sizes.
Each layer has (2**i)**2 boxes for the ith layer.
"""
crop_boxes, layer_idxs = [], []
im_h, im_w = im_size
short_side = min(im_h, im_w)
# Original image
crop_boxes.append([0, 0, im_w, im_h])
layer_idxs.append(0)
def crop_len(orig_len, n_crops, overlap):
"""Crops bounding boxes to the size of the input image."""
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
for i_layer in range(n_layers):
n_crops_per_side = 2 ** (i_layer + 1)
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
crop_w = crop_len(im_w, n_crops_per_side, overlap)
crop_h = crop_len(im_h, n_crops_per_side, overlap)
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
# Crops in XYWH format
for x0, y0 in product(crop_box_x0, crop_box_y0):
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
crop_boxes.append(box)
layer_idxs.append(i_layer + 1)
return crop_boxes, layer_idxs
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
"""Uncrop bounding boxes by adding the crop box offset."""
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
# Check if boxes has a channel dimension
if len(boxes.shape) == 3:
offset = offset.unsqueeze(1)
return boxes + offset
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
"""Uncrop points by adding the crop box offset."""
x0, y0, _, _ = crop_box
offset = torch.tensor([[x0, y0]], device=points.device)
# Check if points has a channel dimension
if len(points.shape) == 3:
offset = offset.unsqueeze(1)
return points + offset
def uncrop_masks(masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int) -> torch.Tensor:
"""Uncrop masks by padding them to the original image size."""
x0, y0, x1, y1 = crop_box
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
return masks
# Coordinate transform masks
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
pad = (x0, pad_x - x0, y0, pad_y - y0)
return torch.nn.functional.pad(masks, pad, value=0)
def remove_small_regions(mask: np.ndarray, area_thresh: float, mode: str) -> Tuple[np.ndarray, bool]:
"""Remove small disconnected regions or holes in a mask, returning the mask and a modification indicator."""
import cv2 # type: ignore
assert mode in {"holes", "islands"}
correct_holes = mode == "holes"
working_mask = (correct_holes ^ mask).astype(np.uint8)
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
sizes = stats[:, -1][1:] # Row 0 is background label
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
if not small_regions:
return mask, False
fill_labels = [0] + small_regions
if not correct_holes:
# If every region is below threshold, keep largest
fill_labels = [i for i in range(n_labels) if i not in fill_labels] or [int(np.argmax(sizes)) + 1]
mask = np.isin(regions, fill_labels)
return mask, True
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
"""
Calculates boxes in XYXY format around masks.
Return [0,0,0,0] for an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
"""
# torch.max below raises an error on empty inputs, just skip in this case
if torch.numel(masks) == 0:
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
# Normalize shape to CxHxW
shape = masks.shape
h, w = shape[-2:]
masks = masks.flatten(0, -3) if len(shape) > 2 else masks.unsqueeze(0)
# Get top and bottom edges
in_height, _ = torch.max(masks, dim=-1)
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
in_height_coords = in_height_coords + h * (~in_height)
top_edges, _ = torch.min(in_height_coords, dim=-1)
# Get left and right edges
in_width, _ = torch.max(masks, dim=-2)
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
right_edges, _ = torch.max(in_width_coords, dim=-1)
in_width_coords = in_width_coords + w * (~in_width)
left_edges, _ = torch.min(in_width_coords, dim=-1)
# If the mask is empty the right edge will be to the left of the left edge.
# Replace these boxes with [0, 0, 0, 0]
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
out = out * (~empty_filter).unsqueeze(-1)
# Return to original shape
return out.reshape(*shape[:-2], 4) if len(shape) > 2 else out[0]
|