File size: 7,816 Bytes
53ad959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Ultralytics YOLO 🚀, AGPL-3.0 license

from typing import List, Tuple, Type

import torch
from torch import nn
from torch.nn import functional as F

from ultralytics.nn.modules import LayerNorm2d


class MaskDecoder(nn.Module):
    """
    Decoder module for generating masks and their associated quality scores, using a transformer architecture to predict
    masks given image and prompt embeddings.

    Attributes:
        transformer_dim (int): Channel dimension for the transformer module.
        transformer (nn.Module): The transformer module used for mask prediction.
        num_multimask_outputs (int): Number of masks to predict for disambiguating masks.
        iou_token (nn.Embedding): Embedding for the IoU token.
        num_mask_tokens (int): Number of mask tokens.
        mask_tokens (nn.Embedding): Embedding for the mask tokens.
        output_upscaling (nn.Sequential): Neural network sequence for upscaling the output.
        output_hypernetworks_mlps (nn.ModuleList): Hypernetwork MLPs for generating masks.
        iou_prediction_head (nn.Module): MLP for predicting mask quality.
    """

    def __init__(
        self,
        *,
        transformer_dim: int,
        transformer: nn.Module,
        num_multimask_outputs: int = 3,
        activation: Type[nn.Module] = nn.GELU,
        iou_head_depth: int = 3,
        iou_head_hidden_dim: int = 256,
    ) -> None:
        """
        Predicts masks given an image and prompt embeddings, using a transformer architecture.

        Args:
            transformer_dim (int): the channel dimension of the transformer module
            transformer (nn.Module): the transformer used to predict masks
            num_multimask_outputs (int): the number of masks to predict when disambiguating masks
            activation (nn.Module): the type of activation to use when upscaling masks
            iou_head_depth (int): the depth of the MLP used to predict mask quality
            iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality
        """
        super().__init__()
        self.transformer_dim = transformer_dim
        self.transformer = transformer

        self.num_multimask_outputs = num_multimask_outputs

        self.iou_token = nn.Embedding(1, transformer_dim)
        self.num_mask_tokens = num_multimask_outputs + 1
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)

        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
            activation(),
        )
        self.output_hypernetworks_mlps = nn.ModuleList(
            [MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
        )

        self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth)

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predict masks given image and prompt embeddings.

        Args:
            image_embeddings (torch.Tensor): the embeddings from the image encoder
            image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
            sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
            dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
            multimask_output (bool): Whether to return multiple masks or a single mask.

        Returns:
            torch.Tensor: batched predicted masks
            torch.Tensor: batched predictions of mask quality
        """
        masks, iou_pred = self.predict_masks(
            image_embeddings=image_embeddings,
            image_pe=image_pe,
            sparse_prompt_embeddings=sparse_prompt_embeddings,
            dense_prompt_embeddings=dense_prompt_embeddings,
        )

        # Select the correct mask or masks for output
        mask_slice = slice(1, None) if multimask_output else slice(0, 1)
        masks = masks[:, mask_slice, :, :]
        iou_pred = iou_pred[:, mask_slice]

        # Prepare output
        return masks, iou_pred

    def predict_masks(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Predicts masks.

        See 'forward' for more details.
        """
        # Concatenate output tokens
        output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
        output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.shape[0], -1, -1)
        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

        # Expand per-image data in batch direction to be per-mask
        src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
        src = src + dense_prompt_embeddings
        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
        b, c, h, w = src.shape

        # Run the transformer
        hs, src = self.transformer(src, pos_src, tokens)
        iou_token_out = hs[:, 0, :]
        mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]

        # Upscale mask embeddings and predict masks using the mask tokens
        src = src.transpose(1, 2).view(b, c, h, w)
        upscaled_embedding = self.output_upscaling(src)
        hyper_in_list: List[torch.Tensor] = [
            self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) for i in range(self.num_mask_tokens)
        ]
        hyper_in = torch.stack(hyper_in_list, dim=1)
        b, c, h, w = upscaled_embedding.shape
        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

        # Generate mask quality predictions
        iou_pred = self.iou_prediction_head(iou_token_out)

        return masks, iou_pred


class MLP(nn.Module):
    """
    MLP (Multi-Layer Perceptron) model lightly adapted from
    https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
    """

    def __init__(
        self,
        input_dim: int,
        hidden_dim: int,
        output_dim: int,
        num_layers: int,
        sigmoid_output: bool = False,
    ) -> None:
        """
        Initializes the MLP (Multi-Layer Perceptron) model.

        Args:
            input_dim (int): The dimensionality of the input features.
            hidden_dim (int): The dimensionality of the hidden layers.
            output_dim (int): The dimensionality of the output layer.
            num_layers (int): The number of hidden layers.
            sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
        """
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        """Executes feedforward within the neural network module and applies activation."""
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = torch.sigmoid(x)
        return x