File size: 10,044 Bytes
53ad959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Ultralytics YOLO 🚀, AGPL-3.0 license

import time
from threading import Thread

import pandas as pd

from ultralytics import Explorer
from ultralytics.utils import ROOT, SETTINGS
from ultralytics.utils.checks import check_requirements

check_requirements(("streamlit>=1.29.0", "streamlit-select>=0.3"))

import streamlit as st
from streamlit_select import image_select


def _get_explorer():
    """Initializes and returns an instance of the Explorer class."""
    exp = Explorer(data=st.session_state.get("dataset"), model=st.session_state.get("model"))
    thread = Thread(
        target=exp.create_embeddings_table, kwargs={"force": st.session_state.get("force_recreate_embeddings")}
    )
    thread.start()
    progress_bar = st.progress(0, text="Creating embeddings table...")
    while exp.progress < 1:
        time.sleep(0.1)
        progress_bar.progress(exp.progress, text=f"Progress: {exp.progress * 100}%")
    thread.join()
    st.session_state["explorer"] = exp
    progress_bar.empty()


def init_explorer_form():
    """Initializes an Explorer instance and creates embeddings table with progress tracking."""
    datasets = ROOT / "cfg" / "datasets"
    ds = [d.name for d in datasets.glob("*.yaml")]
    models = [
        "yolov8n.pt",
        "yolov8s.pt",
        "yolov8m.pt",
        "yolov8l.pt",
        "yolov8x.pt",
        "yolov8n-seg.pt",
        "yolov8s-seg.pt",
        "yolov8m-seg.pt",
        "yolov8l-seg.pt",
        "yolov8x-seg.pt",
        "yolov8n-pose.pt",
        "yolov8s-pose.pt",
        "yolov8m-pose.pt",
        "yolov8l-pose.pt",
        "yolov8x-pose.pt",
    ]
    with st.form(key="explorer_init_form"):
        col1, col2 = st.columns(2)
        with col1:
            st.selectbox("Select dataset", ds, key="dataset", index=ds.index("coco128.yaml"))
        with col2:
            st.selectbox("Select model", models, key="model")
        st.checkbox("Force recreate embeddings", key="force_recreate_embeddings")

        st.form_submit_button("Explore", on_click=_get_explorer)


def query_form():
    """Sets up a form in Streamlit to initialize Explorer with dataset and model selection."""
    with st.form("query_form"):
        col1, col2 = st.columns([0.8, 0.2])
        with col1:
            st.text_input(
                "Query",
                "WHERE labels LIKE '%person%' AND labels LIKE '%dog%'",
                label_visibility="collapsed",
                key="query",
            )
        with col2:
            st.form_submit_button("Query", on_click=run_sql_query)


def ai_query_form():
    """Sets up a Streamlit form for user input to initialize Explorer with dataset and model selection."""
    with st.form("ai_query_form"):
        col1, col2 = st.columns([0.8, 0.2])
        with col1:
            st.text_input("Query", "Show images with 1 person and 1 dog", label_visibility="collapsed", key="ai_query")
        with col2:
            st.form_submit_button("Ask AI", on_click=run_ai_query)


def find_similar_imgs(imgs):
    """Initializes a Streamlit form for AI-based image querying with custom input."""
    exp = st.session_state["explorer"]
    similar = exp.get_similar(img=imgs, limit=st.session_state.get("limit"), return_type="arrow")
    paths = similar.to_pydict()["im_file"]
    st.session_state["imgs"] = paths
    st.session_state["res"] = similar


def similarity_form(selected_imgs):
    """Initializes a form for AI-based image querying with custom input in Streamlit."""
    st.write("Similarity Search")
    with st.form("similarity_form"):
        subcol1, subcol2 = st.columns([1, 1])
        with subcol1:
            st.number_input(
                "limit", min_value=None, max_value=None, value=25, label_visibility="collapsed", key="limit"
            )

        with subcol2:
            disabled = not len(selected_imgs)
            st.write("Selected: ", len(selected_imgs))
            st.form_submit_button(
                "Search",
                disabled=disabled,
                on_click=find_similar_imgs,
                args=(selected_imgs,),
            )
        if disabled:
            st.error("Select at least one image to search.")


# def persist_reset_form():
#    with st.form("persist_reset"):
#        col1, col2 = st.columns([1, 1])
#        with col1:
#            st.form_submit_button("Reset", on_click=reset)
#
#        with col2:
#            st.form_submit_button("Persist", on_click=update_state, args=("PERSISTING", True))


def run_sql_query():
    """Executes an SQL query and returns the results."""
    st.session_state["error"] = None
    query = st.session_state.get("query")
    if query.rstrip().lstrip():
        exp = st.session_state["explorer"]
        res = exp.sql_query(query, return_type="arrow")
        st.session_state["imgs"] = res.to_pydict()["im_file"]
        st.session_state["res"] = res


def run_ai_query():
    """Execute SQL query and update session state with query results."""
    if not SETTINGS["openai_api_key"]:
        st.session_state["error"] = (
            'OpenAI API key not found in settings. Please run yolo settings openai_api_key="..."'
        )
        return
    st.session_state["error"] = None
    query = st.session_state.get("ai_query")
    if query.rstrip().lstrip():
        exp = st.session_state["explorer"]
        res = exp.ask_ai(query)
        if not isinstance(res, pd.DataFrame) or res.empty:
            st.session_state["error"] = "No results found using AI generated query. Try another query or rerun it."
            return
        st.session_state["imgs"] = res["im_file"].to_list()
        st.session_state["res"] = res


def reset_explorer():
    """Resets the explorer to its initial state by clearing session variables."""
    st.session_state["explorer"] = None
    st.session_state["imgs"] = None
    st.session_state["error"] = None


def utralytics_explorer_docs_callback():
    """Resets the explorer to its initial state by clearing session variables."""
    with st.container(border=True):
        st.image(
            "https://raw.githubusercontent.com/ultralytics/assets/main/logo/Ultralytics_Logotype_Original.svg",
            width=100,
        )
        st.markdown(
            "<p>This demo is built using Ultralytics Explorer API. Visit <a href='https://docs.ultralytics.com/datasets/explorer/'>API docs</a> to try examples & learn more</p>",
            unsafe_allow_html=True,
            help=None,
        )
        st.link_button("Ultrlaytics Explorer API", "https://docs.ultralytics.com/datasets/explorer/")


def layout():
    """Resets explorer session variables and provides documentation with a link to API docs."""
    st.set_page_config(layout="wide", initial_sidebar_state="collapsed")
    st.markdown("<h1 style='text-align: center;'>Ultralytics Explorer Demo</h1>", unsafe_allow_html=True)

    if st.session_state.get("explorer") is None:
        init_explorer_form()
        return

    st.button(":arrow_backward: Select Dataset", on_click=reset_explorer)
    exp = st.session_state.get("explorer")
    col1, col2 = st.columns([0.75, 0.25], gap="small")
    imgs = []
    if st.session_state.get("error"):
        st.error(st.session_state["error"])
    else:
        if st.session_state.get("imgs"):
            imgs = st.session_state.get("imgs")
        else:
            imgs = exp.table.to_lance().to_table(columns=["im_file"]).to_pydict()["im_file"]
            st.session_state["res"] = exp.table.to_arrow()
    total_imgs, selected_imgs = len(imgs), []
    with col1:
        subcol1, subcol2, subcol3, subcol4, subcol5 = st.columns(5)
        with subcol1:
            st.write("Max Images Displayed:")
        with subcol2:
            num = st.number_input(
                "Max Images Displayed",
                min_value=0,
                max_value=total_imgs,
                value=min(500, total_imgs),
                key="num_imgs_displayed",
                label_visibility="collapsed",
            )
        with subcol3:
            st.write("Start Index:")
        with subcol4:
            start_idx = st.number_input(
                "Start Index",
                min_value=0,
                max_value=total_imgs,
                value=0,
                key="start_index",
                label_visibility="collapsed",
            )
        with subcol5:
            reset = st.button("Reset", use_container_width=False, key="reset")
            if reset:
                st.session_state["imgs"] = None
                st.experimental_rerun()

        query_form()
        ai_query_form()
        if total_imgs:
            labels, boxes, masks, kpts, classes = None, None, None, None, None
            task = exp.model.task
            if st.session_state.get("display_labels"):
                labels = st.session_state.get("res").to_pydict()["labels"][start_idx : start_idx + num]
                boxes = st.session_state.get("res").to_pydict()["bboxes"][start_idx : start_idx + num]
                masks = st.session_state.get("res").to_pydict()["masks"][start_idx : start_idx + num]
                kpts = st.session_state.get("res").to_pydict()["keypoints"][start_idx : start_idx + num]
                classes = st.session_state.get("res").to_pydict()["cls"][start_idx : start_idx + num]
            imgs_displayed = imgs[start_idx : start_idx + num]
            selected_imgs = image_select(
                f"Total samples: {total_imgs}",
                images=imgs_displayed,
                use_container_width=False,
                # indices=[i for i in range(num)] if select_all else None,
                labels=labels,
                classes=classes,
                bboxes=boxes,
                masks=masks if task == "segment" else None,
                kpts=kpts if task == "pose" else None,
            )

    with col2:
        similarity_form(selected_imgs)
        display_labels = st.checkbox("Labels", value=False, key="display_labels")
        utralytics_explorer_docs_callback()


if __name__ == "__main__":
    layout()