Spaces:
Runtime error
Runtime error
File size: 11,989 Bytes
5e5d326 2099574 ef26f24 5e5d326 5db794d 5e5d326 ef26f24 5e5d326 6c777f0 5e5d326 6c777f0 5e5d326 aa7ef71 5e5d326 6c777f0 5e5d326 6c777f0 5e5d326 6c777f0 5e5d326 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import os
TOGETHER_API_KEY = os.environ.get("TOGETHER_API_KEY")
SEMANTIC_SCHOLAR_API_KEY = os.environ.get("SEMANTIC_SCHOLAR_API_KEY")
import re
import time
import json
import shutil
import requests
import spacy
#!python -m spacy download en_core_web_lg
from openai import OpenAI, APIError
from llama_index import (
VectorStoreIndex,
SimpleDirectoryReader,
ServiceContext,
load_index_from_storage
)
from llama_index.embeddings import HuggingFaceEmbedding, TogetherEmbedding
from llama_index.storage.storage_context import StorageContext
# 处理原始.text数据抹去citation,或者直接从用户出获得没有citation的introduct
def remove_citation(text):
# Regular expression to match \cite{...}
pattern = r'\\cite\{[^}]*\}'
# Replace \cite{...} with an empty string
text = re.sub(pattern, '', text)
# Replace multiple spaces with a single space
text = re.sub(r' +', ' ', text)
# Replace spaces before punctuation marks with just the punctuation marks
text = re.sub(r"\s+([,.!?;:()\[\]{}])", r"\1", text)
return text
def get_chat_completion(client, prompt, llm_model, max_tokens):
messages = [
{
"role": "system",
"content": "You are an AI assistant",
},
{
"role": "user",
"content": prompt,
}
]
try:
chat_completion = client.chat.completions.create(
messages=messages,
model=llm_model,
max_tokens=max_tokens
)
return chat_completion.choices[0].message.content
except APIError as e:
# Handle specific API errors
print(f"API Error: {e}")
except Exception as e:
# Handle other exceptions
print(f"Error: {e}")
def get_relevant_papers(search_query, sort=True, count=10):
"""
search_query (str): the required query parameter and its value (in this case, the keyword we want to search for)
count (int): the number of relevant papers to return for each query
Semantic Scholar Rate limit:
1 request per second for the following endpoints:
/paper/batch
/paper/search
/recommendations
10 requests / second for all other calls
"""
# Define the paper search endpoint URL; All keywords in the search query are matched against the paper’s title and abstract.
url = 'https://api.semanticscholar.org/graph/v1/paper/search'
# Define headers with API key
headers = {'x-api-key': SEMANTIC_SCHOLAR_API_KEY}
query_params = {
'query': search_query,
'fields': 'url,title,year,abstract,authors.name,journal,citationStyles,tldr,referenceCount,citationCount',
'limit': 20,
}
# Send the API request
response = requests.get(url, params=query_params, headers=headers)
# Check response status
if response.status_code == 200:
json_response = response.json()
if json_response['total'] != 0:
papers = json_response['data']
else:
papers = []
# Sort the papers based on citationCount in descending order
if sort:
papers = sorted(papers, key=lambda x: x['citationCount'], reverse=True)
return papers[:count]
else:
print(f"Request failed with status code {response.status_code}: {response.text}")
def save_papers(unique_dir, papers):
os.makedirs(unique_dir, exist_ok=True)
# Save each dictionary to a separate JSON file
for i, dictionary in enumerate(papers):
filename = os.path.join(unique_dir, f"{dictionary['paperId']}.json")
with open(filename, 'w') as json_file:
json.dump(dictionary, json_file, indent=4)
print(f"{len(papers)} papers saved as JSON files successfully at {unique_dir}.")
def get_index(service_context, docs_dir, persist_dir):
documents = SimpleDirectoryReader(docs_dir, filename_as_id=True).load_data()
# check if storage already exists
PERSIST_DIR = persist_dir
if not os.path.exists(PERSIST_DIR):
print('create new index')
index = VectorStoreIndex.from_documents(
documents, service_context=service_context, show_progress=False
)
# store it for later
index.storage_context.persist(persist_dir=PERSIST_DIR)
else:
print('load the existing index')
# load the existing index
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context, service_context=service_context)
# refresh the index
refreshed_docs = index.refresh_ref_docs(documents, update_kwargs={"delete_kwargs": {"delete_from_docstore": True}})
print(f'refreshed_docs:\n{refreshed_docs}')
return index
def get_paper_data(text):
"""text = node.text """
dictionary_from_json = json.loads(text)
bibtex = dictionary_from_json['citationStyles']['bibtex']
bibtex = bibtex.replace('&', 'and')
citation_label = re.findall(r"@(\w+){([\w'-]+)", bibtex)[0][1]
citationCount = dictionary_from_json['citationCount']
if dictionary_from_json['tldr'] is not None:
tldr = dictionary_from_json['tldr']['text']
else:
tldr = 'No tldr available'
url = dictionary_from_json['url']
return citation_label, (bibtex, citationCount, tldr, url)
def move_cite_inside_sentence(sent, ez_citation):
if sent[-1]!='\n':
character = sent[-1]
sent_new = sent[:-1] + ' <ez_citation>' + character
else:
count = sent.count('\n')
sent = sent.strip()
character = sent[-1]
sent_new = sent[:-1] + ' <ez_citation>' + character + '\n'*count
return sent_new.replace('<ez_citation>', ez_citation)
def write_bib_file(bib_file_content, data):
bibtex, citationCount, tldr, url = data
bib_file_content = bib_file_content + f'\n%citationCount: {citationCount}\n%tldr: {tldr}\n%url: {url}\n' + bibtex
return bib_file_content
def write_citation(sent, bib_file_content, retrieved_nodes, sim_threshold=0.75):
labels = []
for node in retrieved_nodes:
citation_label, data = get_paper_data(node.text)
print('relevant paper id (node.id_):', node.id_, 'match score (node.score):', node.score)
print('relevant paper data:', *data)
print('-'*30)
if node.score > sim_threshold and citation_label != "None":
labels.append(citation_label)
if not (citation_label in bib_file_content):
bib_file_content = write_bib_file(bib_file_content, data)
else:
continue
labels = ', '.join(labels)
if labels:
ez_citation = f'\cite{{{labels}}}'
sent_new = move_cite_inside_sentence(sent, ez_citation)
else:
sent_new = sent
return sent_new, bib_file_content
get_prompt = lambda sentence: f"""
I want to use semantic scholar paper search api to find the relevant papers, can you read the following text then suggest me an suitable search query for this task?
Here is an example for using the api:
<example>
```python
import requests
# Define the paper search endpoint URL
url = 'https://api.semanticscholar.org/graph/v1/paper/search'
# Define the required query parameter and its value (in this case, the keyword we want to search for)
query_params = {{
'query': 'semantic scholar platform',
'limit': 3
}}
# Make the GET request with the URL and query parameters
searchResponse = requests.get(url, params=query_params)
```
</example>
Here is the text:
<text>
{sentence}
</text>
"""
# main block
def main(sentences, count, client, llm_model, max_tokens, service_context):
"""count (int): the number of relevant papers to return for each query"""
sentences_new = []
bib_file_content = ''
for sentence in sentences:
prompt = get_prompt(sentence)
response = get_chat_completion(client, prompt, llm_model, max_tokens)
# Define a regular expression pattern to find the value of 'query'
pattern = r"'query': '(.*?)'"
matches = re.findall(pattern, response)
if matches:
search_query = matches[0]
else:
search_query = sentence[:2] # use the first two words as the search query
relevant_papers = get_relevant_papers(search_query, sort=True, count=count)
if relevant_papers:
# save papers to json files and build index
unique_dir = os.path.join("papers", f"{int(time.time())}")
persist_dir = os.path.join("index", f"{int(time.time())}")
save_papers(unique_dir, relevant_papers)
index = get_index(service_context, unique_dir, persist_dir)
# get sentence's most similar papers
retriever = index.as_retriever(service_context=service_context, similarity_top_k=5)
retrieved_nodes = retriever.retrieve(sentence)
sent_new, bib_file_content = write_citation(sentence, bib_file_content, retrieved_nodes, sim_threshold=0.7)
sentences_new.append(sent_new)
else:
sentences_new.append(sentence)
print('sentence:', sentence.strip())
print('search_query:', search_query)
print('='*30)
return sentences_new, bib_file_content
def ez_cite(introduction, debug=False):
nlp = spacy.load("en_core_web_lg")
doc = nlp(introduction)
sentences = [sentence.text for sentence in doc.sents]
sentences = [ remove_citation(sentence) for sentence in sentences]
client = OpenAI(api_key=TOGETHER_API_KEY,
base_url='https://api.together.xyz',
)
llm_model = "Qwen/Qwen1.5-72B-Chat"
max_tokens = 1000
embed_model = TogetherEmbedding(model_name="togethercomputer/m2-bert-80M-8k-retrieval", api_key=TOGETHER_API_KEY)
service_context = ServiceContext.from_defaults(
llm=None, embed_model=embed_model, chunk_size=8192, # chunk_size must be bigger than the whole .json so that all info is preserved, in this case, one doc is one node
)
if debug:
sentences = sentences[:2]
sentences_new, bib_file_content = main(sentences, count=10,
client=client,
llm_model=llm_model,
max_tokens=max_tokens,
service_context=service_context)
with open('intro.bib', 'w') as bib_file:
bib_file.write(bib_file_content)
final_intro = ' '.join(sentences_new)
print(final_intro)
print('='*30)
dir_path = "index"
try:
# Delete the directory and its contents
shutil.rmtree(dir_path)
print(f"Directory '{dir_path}' deleted successfully.")
except Exception as e:
print(f"Error deleting directory '{dir_path}': {e}")
dir_path = "papers"
try:
# Delete the directory and its contents
shutil.rmtree(dir_path)
print(f"Directory '{dir_path}' deleted successfully.")
except Exception as e:
print(f"Error deleting directory '{dir_path}': {e}")
return final_intro, bib_file_content
example1 = r"""In the current Noisy Intermediate-Scale Quantum (NISQ) era, a few methods have been proposed to construct useful quantum algorithms that are compatible with mild hardware restrictions. Most of these methods involve the specification of a quantum circuit Ansatz, optimized in a classical fashion to solve specific computational tasks.
Next to variational quantum eigensolvers in chemistry and variants of the quantum approximate optimization algorithm, machine learning approaches based on such parametrized quantum circuits stand as some of the most promising practical applications to yield quantum advantages."""
if __name__ == "__main__":
final_intro, bib_file_content = ez_cite(example1, debug=True)
|