import gradio as gr from transformers import WhisperProcessor, WhisperForConditionalGeneration import torch from transformers import pipeline import spaces BATCH_SIZE = 8 # Load the model and processor MODEL_NAME = "TheirStory/whisper-small-xhosa" device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) @spaces.GPU def transcribe(inputs): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"] return text demo = gr.Blocks() file_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.Audio(type="filepath", label="Audio file"), # gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", theme="huggingface", title="Whisper App", description=( "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), allow_flagging="never", ) with demo: gr.TabbedInterface([file_transcribe], ["Microphone"]) # Launch the app demo.launch()