from transformers import pipeline import matplotlib.pyplot as plt import twitter_scraper as ts import pandas as pd import gradio as gr pretrained_sentiment = "w11wo/indonesian-roberta-base-sentiment-classifier" pretrained_ner = "cahya/bert-base-indonesian-NER" sentiment_pipeline = pipeline( "sentiment-analysis", model=pretrained_sentiment, tokenizer=pretrained_sentiment, return_all_scores=True ) ner_pipeline = pipeline( "ner", model=pretrained_ner, tokenizer=pretrained_ner, grouped_entities=True ) examples = [ "Jokowi sangat kecewa dengan POLRI atas kerusuhan yang terjadi di Malang", "Lesti marah terhadap perlakuan KDRT yang dilakukan oleh Bilar", "Ungkapan rasa bahagia diutarakan oleh Coki Pardede karena kebabasannya dari penjara" ] def sentiment_analysis(text): output = sentiment_pipeline(text) return {elm["label"]: elm["score"] for elm in output[0]} def ner(text): output = ner_pipeline(text) for elm in output: elm['entity'] = elm['entity_group'] return {"text": text, "entities": output} def sentiment_ner(text): return sentiment_analysis(text), ner(text) def sentiment_df(df): text_list = list(df["Text"].astype(str).values) result = [sentiment_analysis(text) for text in text_list] labels = [] scores = [] for pred in result: idx = list(pred.values()).index(max(list(pred.values()))) labels.append(list(pred.keys())[idx]) scores.append(round(list(pred.values())[idx], 3)) df['Label'] = labels df['Score'] = scores return df def ner_df(df): text_list = list(df["Text"].astype(str).values) label_list = list(df["Label"].astype(str).values) result = [ner(text) for text in text_list] terms = [] sentiments = [] ent = ['PER', 'NOR'] for i, preds in enumerate(result): for pred in preds['entities']: if pred['entity_group'] in ent: terms.append(pred['word']) sentiments.append(label_list[i]) df_ner = pd.DataFrame(columns=['Entity', 'Sentiment']) df_ner['Entity'] = terms df_ner['Sentiment'] = sentiments return df_ner def twitter_analyzer(keyword, max_tweets): df = ts.scrape_tweets(keyword, max_tweets=max_tweets) df["Text"] = df["Text"].apply(ts.preprocess_text) df = sentiment_df(df) # df_ner = ner_df(df) # df_ner = df_ner[df_ner.Entity != keyword] fig = plt.figure() df.groupby(["Label"])["Text"].count().plot.pie(autopct="%.1f%%", figsize=(6,6)) return fig, df[["URL", "Text", "Label", "Score"]] if __name__ == "__main__": with gr.Blocks() as demo: gr.Markdown("""

Tweet Analyzer - Indonesia

""") gr.Markdown( """ Creator: Wira Indra Kusuma """ ) with gr.Tab("Single Input"): with gr.Blocks(): with gr.Row(): with gr.Column(): input_text = gr.Textbox(label="Input Text") analyze_button = gr.Button(label="Analyze") examples_bar = gr.Examples(examples=examples, inputs=input_text) with gr.Column(): sent_output = gr.Label(label="Sentiment Analysis") ner_output = gr.HighlightedText(label="Named Entity Recognition") with gr.Tab("Twitter"): with gr.Blocks(): with gr.Row(): with gr.Column(): keyword_textbox = gr.Textbox(lines=1, label="Keyword") max_tweets_component = gr.Number(value=10, label="Total of Tweets to Scrape", precision=0) submit_button = gr.Button("Submit") plot_component = gr.Plot(label="Pie Chart of Sentiments") dataframe_component = gr.DataFrame(type="pandas", label="Dataframe", max_rows=(20,'fixed'), overflow_row_behaviour='paginate', wrap=True) # df_ner = gr.DataFrame(type="pandas", # label="Dataframe", # max_rows=(20,'fixed'), # overflow_row_behaviour='paginate', # wrap=True) analyze_button.click(sentiment_ner, input_text, [sent_output, ner_output]) submit_button.click(twitter_analyzer, inputs=[keyword_textbox, max_tweets_component], outputs=[plot_component, dataframe_component]) gr.Markdown( """ """ ) demo.launch(inbrowser=True)