import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import ( SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, VitsModel, VitsTokenizer, ) device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline( "automatic-speech-recognition", model="openai/whisper-base", device=device ) # speecht5 # load text-to-speech checkpoint and speaker embeddings # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") # model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) # vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) # embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") # speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # mms model = VitsModel.from_pretrained("Matthijs/mms-tts-fra") tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra") # 保持 main 函数 speech_to_speech_translation 不变 # 并根据需要仅更新 translate 和 synthesise 函数 def translate(audio): # outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) outputs = asr_pipe( audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "fr"}, # generate_kwargs={"task": "transcribe"}, ) print(outputs) return outputs["text"] # speecht5 # def synthesise(text): # inputs = processor(text=text, return_tensors="pt") # speech = model.generate_speech( # inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder # ) # return speech.cpu() def synthesise(text): inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs.audio[0] return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Chinese. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [MMS TTS](https://huggingface.co/Matthijs/mms-tts-fra) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) # demo.launch(share=True) demo.launch()