Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
from transformers import ( | |
SpeechT5ForTextToSpeech, | |
SpeechT5HifiGan, | |
SpeechT5Processor, | |
pipeline, | |
VitsModel, | |
VitsTokenizer, | |
) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# load speech translation checkpoint | |
asr_pipe = pipeline( | |
"automatic-speech-recognition", model="openai/whisper-base", device=device | |
) | |
# speecht5 | |
# load text-to-speech checkpoint and speaker embeddings | |
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) | |
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
# embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
# speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# mms | |
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra") | |
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra") | |
# 保持 main 函数 speech_to_speech_translation 不变 | |
# 并根据需要仅更新 translate 和 synthesise 函数 | |
def translate(audio): | |
# outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
outputs = asr_pipe( | |
audio, | |
max_new_tokens=256, | |
generate_kwargs={"task": "transcribe", "language": "fr"}, | |
# generate_kwargs={"task": "transcribe"}, | |
) | |
print(outputs) | |
return outputs["text"] | |
# speecht5 | |
# def synthesise(text): | |
# inputs = processor(text=text, return_tensors="pt") | |
# speech = model.generate_speech( | |
# inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder | |
# ) | |
# return speech.cpu() | |
def synthesise(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
speech = outputs.audio[0] | |
return speech.cpu() | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Chinese. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's | |
[MMS TTS](https://huggingface.co/Matthijs/mms-tts-fra) model for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
# demo.launch(share=True) | |
demo.launch() | |