|
import torch |
|
|
|
import gradio as gr |
|
import pytube as pt |
|
from transformers import pipeline |
|
|
|
asr = pipeline( |
|
task="automatic-speech-recognition", |
|
model="whispy/whisper_hf", |
|
chunk_length_s=30, |
|
device="cpu", |
|
) |
|
|
|
summarizer = pipeline( |
|
"summarization", |
|
model="it5/it5-efficient-small-el32-news-summarization", |
|
) |
|
|
|
translator = pipeline( |
|
"translation", |
|
model="Helsinki-NLP/opus-mt-it-en") |
|
|
|
def transcribe(microphone, file_upload): |
|
warn_output = "" |
|
if (microphone is not None) and (file_upload is not None): |
|
warn_output = ( |
|
"WARNING: You've uploaded an audio file and used the microphone. " |
|
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" |
|
) |
|
|
|
elif (microphone is None) and (file_upload is None): |
|
return "ERROR: You have to either use the microphone or upload an audio file" |
|
|
|
file = microphone if microphone is not None else file_upload |
|
|
|
text = asr(file)["text"] |
|
|
|
translate = translator(text) |
|
translate = translate[0]["translation_text"] |
|
|
|
return warn_output + text, translate |
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
|
|
def yt_transcribe(yt_url): |
|
yt = pt.YouTube(yt_url) |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
stream = yt.streams.filter(only_audio=True)[0] |
|
stream.download(filename="audio.mp3") |
|
|
|
text = asr("audio.mp3")["text"] |
|
|
|
summary = summarizer(text) |
|
summary = summary[0]["summary_text"] |
|
|
|
translate = translator(summary) |
|
translate = translate[0]["translation_text"] |
|
|
|
return html_embed_str, text, summary, translate |
|
|
|
demo = gr.Blocks() |
|
|
|
mf_transcribe = gr.Interface( |
|
fn=transcribe, |
|
inputs=[ |
|
gr.inputs.Audio(source="microphone", type="filepath", optional=True), |
|
gr.inputs.Audio(source="upload", type="filepath", optional=True), |
|
], |
|
outputs=["text", "text"], |
|
layout="horizontal", |
|
theme="huggingface", |
|
title="Whisper Demo: Transcribe and Translate Italian Audio", |
|
description=( |
|
"Transcribe and Translate long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned" |
|
f" [whispy/whisper_hf](https://huggingface.co/whispy/whisper_hf) and π€ Transformers to transcribe audio files" |
|
" of arbitrary length. It also uses another model for the translation." |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
yt_transcribe = gr.Interface( |
|
fn=yt_transcribe, |
|
inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], |
|
outputs=["html", |
|
gr.Textbox(label="Transcribed text"), |
|
gr.Textbox(label="Summarized text"), |
|
gr.Textbox(label="Translated text"), |
|
] |
|
layout="horizontal", |
|
theme="huggingface", |
|
title="Whisper Demo: Transcribe, Summarize and Translate YouTube", |
|
description=( |
|
"Transcribe, Summarize and Translate long-form YouTube videos with the click of a button! Demo uses the the fine-tuned " |
|
f" [whispy/whisper_hf](https://huggingface.co/whispy/whisper_hf) and π€ Transformers to transcribe audio files of" |
|
" arbitrary length. It also uses other two models to first summarize and then translate the text input. You can try with the following examples: " |
|
f" [Video1](https://www.youtube.com/watch?v=xhWhyu8cBTk)" |
|
f" [Video2](https://www.youtube.com/watch?v=C6Vw_Z3t_2U)" |
|
), |
|
allow_flagging="never", |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe and Translate Audio", "Transcribe, Summarize and Translate YouTube"]) |
|
|
|
demo.launch(enable_queue=True) |
|
|