File size: 748 Bytes
26961aa
f343adf
26961aa
f343adf
f75714e
f343adf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import pipeline

# Load pre-trained sentiment-analysis pipeline
classifier = pipeline('text-classification', model="wcyat/roberta-suicide-detection-hk")

def classify_text(text):
    # Get predictions
    results = classifier(text)
    # Extract and format the results
    output = {result['label']: result['score'] for result in results}
    return output

import gradio as gr

# Define Gradio interface
iface = gr.Interface(
    fn=classify_text,  # function to use for prediction
    inputs="text",     # input type
    outputs="label",   # output type
    title="Text Classification with BERT",
    description="Enter a sentence to classify whether it is suicidal."
)

# Launch the interface
iface.launch()