import gradio as gr import random from PIL import Image from funcs import detect_emotions, cosine_distance, generate_triggers_img, summarize_and_recommend # img_paths = ['2.jpg','3.jpeg','4.jpeg','5.jpeg','6.jpeg'] # img_path = random.choice(img_paths) # img_1 = Image.open(img_path) # img_path = '7.jpg' # img_2 = Image.open(img_path) def submit(user_message, therapy_session_conversation, session_conversation): response = get_doc_response_emotions(user_message, therapy_session_conversation) return '', therapy_session_conversation, emotions_msg def sum_rec(session_conversation): full_summary, full_recommendations = summarize_and_recommend(session_conversation) return full_summary, full_recommendations with gr.Blocks() as demo: img_paths = ['2.jpg','3.jpeg','4.jpeg','5.jpeg','6.jpeg'] img_path = random.choice(img_paths) img_1 = Image.open(img_path) img_path = '7.jpg' img_2 = Image.open(img_path) gr.Markdown("""# Falcon Cognitive Behavioural Therapy Assistant - Your Personal AI Therapist. Start chatting...""") session_conversation = gr.State([]) with gr.Row(): with gr.Column(scale=1): image = gr.Image(type='pil', label ='Your Personal Therapy Assistant', value=img_1, interactive=False) emotions = gr.Image(value=img_2, label='Top 5 Emotion Triggers') summary_notes = gr.Textbox(label="Summary Notes of the Session", visible=False) with gr.Column(scale=2): chatbox = gr.Chatbot(label="Therapy Session Conversation",value =[[None, 'Therapist: Hello, What can I do for you?']], height=300) user_input = gr.Textbox(placeholder="Enter your message here...", label="User") submit_button = gr.Button("Submit") submit_button.click(submit, [user_input, chatbox], [user_input, chatbox, emotions]) user_input.submit(submit, [user_input, chatbox], [user_input, chatbox, emotions]) recommendations = gr.Textbox(label="Recommended Actions", visible = False) def summarize_and_recommend_process(): sn, r = summarize_and_recommend() return gr.update(visible=True, value=sn), gr.update(visible=True, value=r) process_button = gr.Button("Generate Session Notes & Recommendations") clear = gr.ClearButton(components=[user_input, chatbox, emotions, summary_notes, recommendations], value="Clear console") process_button.click(sum_rec, inputs=None, outputs=[summary_notes, recommendations]) demo.launch(debug=True, share=True)