vsrinivas commited on
Commit
a9f37b1
1 Parent(s): 8bd6a90

Update funcs.py

Browse files
Files changed (1) hide show
  1. funcs.py +1 -104
funcs.py CHANGED
@@ -11,7 +11,6 @@ import os
11
  from datetime import datetime
12
  from openai import OpenAI
13
  from ai71 import AI71
14
- import gradio as gr
15
 
16
  if torch.cuda.is_available():
17
  model = model.to('cuda')
@@ -23,7 +22,6 @@ with open ('emotion_group_labels.txt') as file:
23
  embed_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
24
  classifier = pipeline("zero-shot-classification", model ='facebook/bart-large-mnli')
25
 
26
- AI71_BASE_URL = "https://api.ai71.ai/v1/"
27
  AI71_API_KEY = os.getenv('AI71_API_KEY')
28
 
29
  # Detect emotions from patient dialogues
@@ -85,13 +83,10 @@ def get_doc_response_emotions(user_message, therapy_session_conversation):
85
  similarities.append(cosine_distance(user_embedding,v))
86
 
87
  top_match_index = similarities.index(max(similarities))
88
- # doc_response = dials_embeddings.iloc[top_match_index+1]['Doctor']
89
  doc_response = dials_embeddings.iloc[top_match_index]['Doctor']
90
 
91
  therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response])
92
 
93
- # session_conversation.extend(["User: "+user_message, "Therapist: "+doc_response])
94
-
95
  print(f"User's message: {user_message}")
96
  print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}")
97
  print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n")
@@ -99,17 +94,10 @@ def get_doc_response_emotions(user_message, therapy_session_conversation):
99
  return '', therapy_session_conversation, emotions_msg
100
 
101
  def summarize_and_recommend(therapy_session_conversation):
102
- print("tcs:", therapy_session_conversation, type(therapy_session_conversation))
103
 
104
  session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
105
  session_conversation = [item[0] for item in therapy_session_conversation]
106
- print(type(session_conversation), session_conversation)
107
  session_conversation = [x for x in session_conversation if x is not None]
108
-
109
- # session_conversation_processed = [session_time] + therapy_session_conversation
110
- # session_conversation_processed = session_conversation.copy()
111
- # session_conversation_processed.insert(0, "Session_time: "+session_time)
112
- # session_conversation_processed ='\n'.join(session_conversation_processed)
113
 
114
  session_conversation.insert(0, "Session_time: "+session_time)
115
 
@@ -161,95 +149,4 @@ def summarize_and_recommend(therapy_session_conversation):
161
  print("\n")
162
  print("Full recommendations:", full_recommendations)
163
  chatbox=[]
164
- return full_summary, full_recommendations, chatbox
165
-
166
-
167
-
168
-
169
-
170
- # class process_session():
171
- # def __init__(self):
172
- # self.session_conversation=[]
173
-
174
- # def get_doc_response_emotions(self, user_message, therapy_session_conversation):
175
-
176
- # user_messages = []
177
- # user_messages.append(user_message)
178
- # emotion_set = detect_emotions(user_message)
179
- # print(emotion_set)
180
-
181
- # emotions_msg = generate_triggers_img(emotion_set)
182
- # user_embedding = embed_model.encode(user_message, device='cuda' if torch.cuda.is_available() else 'cpu')
183
-
184
- # similarities =[]
185
- # for v in dials_embeddings['embeddings']:
186
- # similarities.append(cosine_distance(user_embedding,v))
187
-
188
- # top_match_index = similarities.index(max(similarities))
189
- # # doc_response = dials_embeddings.iloc[top_match_index+1]['Doctor']
190
- # doc_response = dials_embeddings.iloc[top_match_index]['Doctor']
191
-
192
- # therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response])
193
-
194
- # self.session_conversation.extend(["User: "+user_message, "Therapist: "+doc_response])
195
-
196
- # print(f"User's message: {user_message}")
197
- # print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}")
198
- # print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n")
199
-
200
- # return '', therapy_session_conversation, emotions_msg
201
-
202
- # def summarize_and_recommend(self):
203
-
204
- # session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
205
- # session_conversation_processed = self.session_conversation.copy()
206
- # session_conversation_processed.insert(0, "Session_time: "+session_time)
207
- # session_conversation_processed ='\n'.join(session_conversation_processed)
208
- # print("Session conversation:", session_conversation_processed)
209
-
210
- # full_summary = ""
211
- # for chunk in AI71(AI71_API_KEY).chat.completions.create(
212
- # model="tiiuae/falcon-180b-chat",
213
- # messages=[
214
- # {"role": "system", "content": """You are an Expert Cognitive Behavioural Therapist and Precis writer.
215
- # Summarize the below user content <<<session_conversation_processed>>> into useful, ethical, relevant and realistic phrases with a format
216
- # Session Time:
217
- # Summary of the patient messages: #in two to four sentences
218
- # Summary of therapist messages: #in two to three sentences:
219
- # Summary of the whole session: # in two to three sentences. Ensure the entire session summary strictly does not exceed 100 tokens."""},
220
- # {"role": "user", "content": session_conversation_processed},
221
- # ],
222
- # stream=True,
223
- # ):
224
- # if chunk.choices[0].delta.content:
225
- # summary = chunk.choices[0].delta.content
226
- # full_summary += summary
227
- # full_summary = full_summary.replace('User:', '').strip()
228
- # print("\n")
229
- # print("Full summary:", full_summary)
230
-
231
- # full_recommendations = ""
232
- # for chunk in AI71(AI71_API_KEY).chat.completions.create(
233
- # model="tiiuae/falcon-180b-chat",
234
- # messages=[
235
- # {"role": "system", "content": """You are an expert Cognitive Behavioural Therapist.
236
- # Based on the full summary <<<full_summary>>> provide clinically valid, useful, appropriate action plan for the Patient as a bullted list.
237
- # The list shall contain both medical and non medical prescriptions, dos and donts. The format of response shall be in passive voice with proper tense.
238
- # - The patient is referred to........ #in one sentence
239
- # - The patient is advised to ........ #in one sentence
240
- # - The patient is refrained from........ #in one sentence
241
- # - It is suggested that tha patient ........ #in one sentence
242
- # - Scheduled a follow-up session with the patient........#in one sentence
243
- # *Ensure the list contains NOT MORE THAN 7 points"""},
244
- # {"role": "user", "content": full_summary},
245
- # ],
246
- # stream=True,
247
- # ):
248
- # if chunk.choices[0].delta.content:
249
- # rec = chunk.choices[0].delta.content
250
- # full_recommendations += rec
251
- # full_recommendations = full_recommendations.replace('User:', '').strip()
252
- # print("\n")
253
- # print("Full recommendations:", full_recommendations)
254
- # self.session_conversation=[]
255
- # return full_summary, full_recommendations
 
11
  from datetime import datetime
12
  from openai import OpenAI
13
  from ai71 import AI71
 
14
 
15
  if torch.cuda.is_available():
16
  model = model.to('cuda')
 
22
  embed_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
23
  classifier = pipeline("zero-shot-classification", model ='facebook/bart-large-mnli')
24
 
 
25
  AI71_API_KEY = os.getenv('AI71_API_KEY')
26
 
27
  # Detect emotions from patient dialogues
 
83
  similarities.append(cosine_distance(user_embedding,v))
84
 
85
  top_match_index = similarities.index(max(similarities))
 
86
  doc_response = dials_embeddings.iloc[top_match_index]['Doctor']
87
 
88
  therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response])
89
 
 
 
90
  print(f"User's message: {user_message}")
91
  print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}")
92
  print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n")
 
94
  return '', therapy_session_conversation, emotions_msg
95
 
96
  def summarize_and_recommend(therapy_session_conversation):
 
97
 
98
  session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
99
  session_conversation = [item[0] for item in therapy_session_conversation]
 
100
  session_conversation = [x for x in session_conversation if x is not None]
 
 
 
 
 
101
 
102
  session_conversation.insert(0, "Session_time: "+session_time)
103
 
 
149
  print("\n")
150
  print("Full recommendations:", full_recommendations)
151
  chatbox=[]
152
+ return full_summary, full_recommendations, chatbox