|
import gradio as gr |
|
import random |
|
from PIL import Image |
|
|
|
from funcs import detect_emotions, cosine_distance, generate_triggers_img, get_doc_response_emotions, summarize_and_recommend |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("""# Your Intimate Personal Therapist |
|
## - Your Personal AI Therapist. Start chatting... Once you finish chatting, click "Generate Session Notes & Recommendations" button and wait for few seconds for them to appear""") |
|
|
|
therapy_session_conversation = gr.State([]) |
|
|
|
img_paths = ['2.jpg','3.jpeg','4.jpeg','5.jpeg','6.jpeg'] |
|
img_path = random.choice(img_paths) |
|
img_1 = Image.open(img_path) |
|
img_path = '7.jpg' |
|
img_2 = Image.open(img_path) |
|
|
|
with gr.Row(): |
|
|
|
with gr.Column(scale=1): |
|
image = gr.Image(type='pil', label ='Your Personal Therapy Assistant', value=img_1, interactive=False) |
|
emotions = gr.Image(value=img_2, label='Top 5 Emotion Triggers') |
|
summary_notes = gr.Textbox(label="Summary Notes of the Session", visible=False) |
|
|
|
with gr.Column(scale=2): |
|
chatbox = gr.Chatbot(label="Therapy Session Conversation",value =[[None, 'Therapist: Hello, What can I do for you?']], height=300) |
|
user_input = gr.Textbox(placeholder="Enter your message here...", label="User") |
|
submit_button = gr.Button("Submit") |
|
submit_button.click(get_doc_response_emotions, [user_input, chatbox], [user_input, chatbox, emotions]) |
|
user_input.submit(get_doc_response_emotions, [user_input, chatbox], [user_input, chatbox, emotions]) |
|
recommendations = gr.Textbox(label="Recommended Actions", visible = False) |
|
|
|
def summarize_and_recommend_process(tcs): |
|
sn, r, cb = summarize_and_recommend(tcs) |
|
return gr.update(visible=True, value=sn), gr.update(visible=True, value=r), gr.update(visible=True, value=cb) |
|
|
|
process_button = gr.Button("Generate Session Notes & Recommendations") |
|
clear = gr.ClearButton(components=[user_input, chatbox, emotions, summary_notes, recommendations], value="Clear console") |
|
process_button.click(summarize_and_recommend_process, inputs=[chatbox], outputs=[summary_notes, recommendations, chatbox]) |
|
|
|
|
|
demo.launch(debug=True, share=True) |