|
import torch |
|
import numpy as np |
|
import io |
|
import matplotlib.pyplot as plt |
|
import pandas as pd |
|
from sentence_transformers import SentenceTransformer |
|
from transformers import pipeline |
|
from datetime import datetime |
|
from PIL import Image |
|
import os |
|
from datetime import datetime |
|
from openai import OpenAI |
|
from ai71 import AI71 |
|
|
|
if torch.cuda.is_available(): |
|
model = model.to('cuda') |
|
|
|
dials_embeddings = pd.read_pickle('https://huggingface.co/datasets/vsrinivas/CBT_dialogue_embed_ds/resolve/main/kaggle_therapy_embeddings.pkl') |
|
with open ('emotion_group_labels.txt') as file: |
|
emotion_group_labels = file.read().splitlines() |
|
|
|
embed_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') |
|
classifier = pipeline("zero-shot-classification", model ='facebook/bart-large-mnli') |
|
|
|
AI71_BASE_URL = "https://api.ai71.ai/v1/" |
|
AI71_API_KEY = os.getenv('AI71_API_KEY') |
|
|
|
session_conversation=[] |
|
|
|
|
|
def detect_emotions(text): |
|
emotion = classifier(text, candidate_labels=emotion_group_labels, batch_size=16) |
|
top_5_scores = [i/sum(emotion['scores'][:5]) for i in emotion['scores'][:5]] |
|
top_5_emotions = emotion['labels'][:5] |
|
emotion_set = {l: "{:.2%}".format(s) for l, s in zip(top_5_emotions, top_5_scores)} |
|
return emotion_set |
|
|
|
|
|
def cosine_distance(vec1,vec2): |
|
cosine = (np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2))) |
|
return cosine |
|
|
|
|
|
def generate_triggers_img(items): |
|
labels = list(items.keys()) |
|
values = [float(v.strip('%')) for v in items.values()] |
|
|
|
new_items = {k:v for k, v in zip(labels, values)} |
|
new_items = dict(sorted(new_items.items(), key=lambda item: item[1])) |
|
labels = list(new_items.keys()) |
|
values = list(new_items.values()) |
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
colors = plt.cm.viridis(np.linspace(0, 1, len(labels))) |
|
|
|
bars = ax.barh(labels, values, color=colors) |
|
|
|
for spine in ax.spines.values(): |
|
spine.set_visible(False) |
|
|
|
ax.tick_params(axis='y', labelsize=18) |
|
ax.xaxis.set_visible(False) |
|
ax.yaxis.set_ticks_position('none') |
|
|
|
for bar in bars: |
|
width = bar.get_width() |
|
ax.text(width, bar.get_y() + bar.get_height()/2, f'{width:.2f}%', |
|
ha='left', va='center', fontweight='bold', fontsize=18) |
|
|
|
plt.tight_layout() |
|
plt.savefig('triggeres.png') |
|
triggers_img = Image.open('triggeres.png') |
|
return triggers_img |
|
|
|
|
|
class process_session(): |
|
def __init__(self): |
|
self.session_conversation=[] |
|
|
|
def get_doc_response_emotions(self, user_message, therapy_session_conversation): |
|
|
|
user_messages = [] |
|
user_messages.append(user_message) |
|
emotion_set = detect_emotions(user_message) |
|
print(emotion_set) |
|
|
|
emotions_msg = generate_triggers_img(emotion_set) |
|
user_embedding = embed_model.encode(user_message, device='cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
similarities =[] |
|
for v in dials_embeddings['embeddings']: |
|
similarities.append(cosine_distance(user_embedding,v)) |
|
|
|
top_match_index = similarities.index(max(similarities)) |
|
|
|
doc_response = dials_embeddings.iloc[top_match_index]['Doctor'] |
|
|
|
therapy_session_conversation.append(["User: "+user_message, "Therapist: "+doc_response]) |
|
|
|
self.session_conversation.extend(["User: "+user_message, "Therapist: "+doc_response]) |
|
|
|
print(f"User's message: {user_message}") |
|
print(f"RAG Matching message: {dials_embeddings.iloc[top_match_index]['Patient']}") |
|
print(f"Therapist's response: {dials_embeddings.iloc[top_match_index]['Doctor']}\n\n") |
|
|
|
return '', therapy_session_conversation, emotions_msg |
|
|
|
def summarize_and_recommend(self): |
|
|
|
session_time = str(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) |
|
session_conversation_processed = self.session_conversation.copy() |
|
session_conversation_processed.insert(0, "Session_time: "+session_time) |
|
session_conversation_processed ='\n'.join(session_conversation_processed) |
|
print("Session conversation:", session_conversation_processed) |
|
|
|
full_summary = "" |
|
for chunk in AI71(AI71_API_KEY).chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=[ |
|
{"role": "system", "content": """You are an Expert Cognitive Behavioural Therapist and Precis writer. |
|
Summarize the below user content <<<session_conversation_processed>>> into useful, ethical, relevant and realistic phrases with a format |
|
Session Time: |
|
Summary of the patient messages: #in two to four sentences |
|
Summary of therapist messages: #in two to three sentences: |
|
Summary of the whole session: # in two to three sentences. Ensure the entire session summary strictly does not exceed 100 tokens."""}, |
|
{"role": "user", "content": session_conversation_processed}, |
|
], |
|
stream=True, |
|
): |
|
if chunk.choices[0].delta.content: |
|
summary = chunk.choices[0].delta.content |
|
full_summary += summary |
|
full_summary = full_summary.replace('User:', '').strip() |
|
print("\n") |
|
print("Full summary:", full_summary) |
|
|
|
full_recommendations = "" |
|
for chunk in AI71(AI71_API_KEY).chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=[ |
|
{"role": "system", "content": """You are an expert Cognitive Behavioural Therapist. |
|
Based on the full summary <<<full_summary>>> provide clinically valid, useful, appropriate action plan for the Patient as a bullted list. |
|
The list shall contain both medical and non medical prescriptions, dos and donts. The format of response shall be in passive voice with proper tense. |
|
- The patient is referred to........ #in one sentence |
|
- The patient is advised to ........ #in one sentence |
|
- The patient is refrained from........ #in one sentence |
|
- It is suggested that tha patient ........ #in one sentence |
|
- Scheduled a follow-up session with the patient........#in one sentence |
|
*Ensure the list contains NOT MORE THAN 7 points"""}, |
|
{"role": "user", "content": full_summary}, |
|
], |
|
stream=True, |
|
): |
|
if chunk.choices[0].delta.content: |
|
rec = chunk.choices[0].delta.content |
|
full_recommendations += rec |
|
full_recommendations = full_recommendations.replace('User:', '').strip() |
|
print("\n") |
|
print("Full recommendations:", full_recommendations) |
|
session_conversation=[] |
|
return full_summary, full_recommendations |
|
|