File size: 4,987 Bytes
ee54bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c94ca86
ee54bd3
 
 
 
 
 
2a6fdc6
ee54bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5fe020
 
ee54bd3
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from pytubefix import YouTube
from moviepy.editor import VideoFileClip, AudioFileClip
from pydub import AudioSegment
import whisper
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import gradio as gr
import ast
from IPython.display import Audio, display

model = whisper.load_model("base")

def extract_yt_audio(video_url):

    """
    Takes youtube url (youtobe_url) and path where audio clip will be stored (audio_path)
    in string format as input arguments.
    Returns the extracted video clip (video) and the path to audio clip (audio_path).
    """

    if "youtube.com" in video_url or "youtu.be" in video_url:
      yt = YouTube(video_url, use_oauth=True)
      a = yt.streams.filter(only_audio=True).first()
      audio_file = a.download()
      sample = AudioSegment.from_file(audio_file)
    else:
      sample = AudioSegment.from_file(video_url)
    audio_path = 'audio.wav'
    # display(Audio(audio_path))
    sample.export(audio_path, format="wav")
    result = model.transcribe(audio_path)
    print("Transcription started \nTranscript:\n")
    print(result['text'], '\n')
    return gr.update(visible=True, value=result['text']), gr.update(visible=True), result['segments'], gr.update(visible=True, value=audio_path)

    
def semantic_chunks(segs, max_chunk_length=15.0):
    print(type(segs))
    print(segs)
    """
    Takes segments of transcribed audio and 15secs as maximum check duration and returns chunks of the audio as a list.
    """
    segs = ast.literal_eval(segs)
    print(type(segs))

    chunks = []
    current_chunk = []
    chunk_start_time = None
    chunk_end_time = None
    chunk_duration = 0

    # iterate over segments and create chunks out of each segment
    for segment in segs:
        start = segment['start']
        end = segment['end']
        text = segment['text']

        # sentence tokenize each segment to capture more semantic context
        sentences = sent_tokenize(text)

        # iterate over the sentences and group them into chunks subject to the max_chunk_length is 15 secs
        for sentence in sentences:
            sentence_duration = (end - start) / len(sentences)

            # Check if adding the sentence exceeds the max_chunk_length of 15 secs
            if chunk_duration + sentence_duration <= max_chunk_length:
                if not current_chunk:
                    chunk_start_time = start
                current_chunk.append(sentence)
                chunk_duration += sentence_duration
                chunk_end_time = end
            else:
                # If the chunk would be too long, finalize the current chunk with required parameters
                chunks.append({
                    'chunk_id': len(chunks) + 1,
                    'chunk_length (secs)': chunk_duration,
                    'semantic_chunk': ' '.join(current_chunk),
                    'start_time (secs)': chunk_start_time,
                    'end_time (secs)': chunk_end_time
                })
                # Start a new chunk with the current sentence
                current_chunk = [sentence]
                chunk_start_time = start
                chunk_end_time = end
                chunk_duration = sentence_duration

    # Finalize the last chunk if it exists
    if current_chunk:
        chunks.append({
            'chunk_id': len(chunks) + 1,
            'chunk_length (secs)': chunk_duration,
            'semantic_chunk': ' '.join(current_chunk),
            'start_time (secs)': chunk_start_time,
            'end_time (secs)': chunk_end_time
        })

    return gr.update(visible=True, value=pd.DataFrame(chunks))


def clear_all():
    return (gr.update(visible=True, value=""), gr.update(visible=True, value=""), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # Extract audio from video, get the transcript and then get the semantic chunk information.
    """)
    # input_url = gr.Textbox(label="Type-in the URL or File Location of the Video", value='https://www.youtube.com/watch?v=ug5e4JfC3oo')
    input_url = gr.Textbox(label="Type-in the URL or File Location of the Video", value='sample.wav')
    segments = gr.Textbox(visible=False)
    submit_btn_1 = gr.Button("Get the Transcript", visible=True)
    audio = gr.Audio(visible=True, type="filepath", label='Play Audio')
    transcript = gr.Textbox(visible=True, label='Transcript')
    submit_btn_2 = gr.Button("Get the semantically Chuncked Segments", visible=False)
    chunks = gr.Dataframe(visible=False, label = 'semantic Chunks')
    clear_btn = gr.Button("Clear")

    submit_btn_1.click(fn=extract_yt_audio, inputs=[input_url], outputs=[transcript, submit_btn_2, segments, audio])
    submit_btn_2.click(fn=semantic_chunks, inputs=[segments], outputs=[chunks])
    clear_btn.click(fn=clear_all, outputs=[input_url, transcript, submit_btn_2, chunks, audio])
demo.launch(debug=True)