vsrinivas's picture
Update app.py
53dc0c8 verified
raw
history blame
4.53 kB
import gradio as gr
from io import BytesIO
from base64 import b64encode
from pinecone_text.sparse import BM25Encoder
from pinecone import Pinecone
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
model = SentenceTransformer('sentence-transformers/clip-ViT-B-32')
fashion = load_dataset("ashraq/fashion-product-images-small", split="train")
images = fashion['image']
metadata = fashion.remove_columns('image')
item_list = list(set(metadata['productDisplayName']))
INDEX_NAME = 'srinivas-hybrid-search'
PINECONE_API_KEY = os.getenv(pinecone_api_key)
pinecone = Pinecone(api_key=PINECONE_API_KEY)
index = pinecone.Index(INDEX_NAME)
bm25 = BM25Encoder()
bm25.fit(metadata['productDisplayName'])
# Function to display images in a grid layout
def display_result(image_batch, match_batch):
figures = []
for img, title in zip(image_batch, match_batch):
# Ensure the image is in the correct format for encoding
if img.mode != 'RGB':
img = img.convert('RGB')
# Convert image to bytes and encode as base64
b = BytesIO()
img.save(b, format='PNG')
img_str = b64encode(b.getvalue()).decode('utf-8')
# Create HTML figure element with the image title
figures.append(f'''
<figure style="margin: 0; padding: 0; text-align: left;">
<figcaption style="font-weight: bold; margin:0;">{title}</figcaption>
<img src="data:image/png;base64,{img_str}" style="width: 180px; height: 240px; margin: 0;" >
</figure>
''')
# Combine all figures into a single HTML string with reduced spacing
html_content = f'''
<div style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 20px; align-items: start;">
{''.join(figures)}
</div>
'''
return html_content
# Function to scale vectors based on alpha for hybrid search
def hybrid_scale(dense, sparse, alpha):
if alpha < 0 or alpha > 1:
raise ValueError("Alpha must be between 0 and 1")
# Scale sparse and dense vectors to create hybrid search vectors
hsparse = {
'indices': sparse['indices'],
'values': [v * (1 - alpha) for v in sparse['values']]
}
hdense = [v * alpha for v in dense]
return hdense, hsparse
# Function to process the input text and slider value, with error handling
def process_input(query, slider_value):
try:
slider_value = float(slider_value)
sparse = bm25.encode_queries(query)
dense = model.encode(query).tolist()
hdense, hsparse = hybrid_scale(dense, sparse, slider_value)
result = index.query(
top_k=12,
vector=hdense, # Use hybrid dense vector
sparse_vector=hsparse, # Use hybrid sparse vector
include_metadata=True
)
imgs = [images[int(r["id"])] for r in result["matches"]]
matches = [x["metadata"]['productDisplayName'] for x in result["matches"]]
print(f"No. of matching images: {len(imgs)}")
print(matches)
return display_result(imgs, matches)
except Exception as e:
# Handle exceptions and return a friendly error message
return f"<p style='color:red;'>Not found. Try another search: {str(e)}</p>"
# Function to update the textbox value when a dropdown choice is selected
def update_textbox(choice):
return choice
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Search for Your Fashion Item")
with gr.Row():
dropdown = gr.Dropdown(choices=item_list, label="Select an item from here..", value= "Select an item from this list or start typing", interactive=True)
text_input = gr.Textbox(label="Alternatively, enter item text..", value="Type-in what you are looking for", interactive=True)
slider = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.5, label="Adjust the Slider to get better results that suit what you are looking for..", interactive=True)
# Automatically update the text input when a dropdown selection is made
dropdown.change(fn=update_textbox, inputs=dropdown, outputs=text_input)
# HTML output box to display images
html_output = gr.HTML(label="Relevant Images")
# Process and display images based on text input or slider changes
text_input.change(fn=process_input, inputs=[text_input, slider], outputs=html_output)
slider.change(fn=process_input, inputs=[text_input, slider], outputs=html_output)
demo.launch(debug=True, share=True)