vs4vijay yinshengming commited on
Commit
bd0d686
0 Parent(s):

Duplicate from microsoft/visual_chatgpt

Browse files

Co-authored-by: yinshengming <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Visual Chatgpt
3
+ emoji: 🎨
4
+ colorFrom: yellow
5
+ colorTo: yellow
6
+ sdk: gradio
7
+ sdk_version: 3.20.1
8
+ app_file: app.py
9
+ pinned: false
10
+ license: osl-3.0
11
+ duplicated_from: microsoft/visual_chatgpt
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.
2
+
3
+ Visual ChatGPT is able to process and understand large amounts of text and image. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated.
4
+
5
+ Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description.
6
+
7
+ Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics.
8
+
9
+
10
+ TOOLS:
11
+ ------
12
+
13
+ Visual ChatGPT has access to the following tools:"""
14
+
15
+ VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
16
+
17
+ ```
18
+ Thought: Do I need to use a tool? Yes
19
+ Action: the action to take, should be one of [{tool_names}]
20
+ Action Input: the input to the action
21
+ Observation: the result of the action
22
+ ```
23
+
24
+ When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
25
+
26
+ ```
27
+ Thought: Do I need to use a tool? No
28
+ {ai_prefix}: [your response here]
29
+ ```
30
+ """
31
+
32
+ VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists.
33
+ You will remember to provide the image file name loyally if it's provided in the last tool observation.
34
+
35
+ Begin!
36
+
37
+ Previous conversation history:
38
+ {chat_history}
39
+
40
+ New input: {input}
41
+ Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination.
42
+ The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human.
43
+ Thought: Do I need to use a tool? {agent_scratchpad}"""
44
+
45
+ VISUAL_CHATGPT_PREFIX_CN = """Visual ChatGPT 旨在能够协助完成范围广泛的文本和视觉相关任务,从回答简单的问题到提供对广泛主题的深入解释和讨论。 Visual ChatGPT 能够根据收到的输入生成类似人类的文本,使其能够进行听起来自然的对话,并提供连贯且与手头主题相关的响应。
46
+
47
+ Visual ChatGPT 能够处理和理解大量文本和图像。作为一种语言模型,Visual ChatGPT 不能直接读取图像,但它有一系列工具来完成不同的视觉任务。每张图片都会有一个文件名,格式为“image/xxx.png”,Visual ChatGPT可以调用不同的工具来间接理解图片。在谈论图片时,Visual ChatGPT 对文件名的要求非常严格,绝不会伪造不存在的文件。在使用工具生成新的图像文件时,Visual ChatGPT也知道图像可能与用户需求不一样,会使用其他视觉问答工具或描述工具来观察真实图像。 Visual ChatGPT 能够按顺序使用工具,并且忠于工具观察输出,而不是伪造图像内容和图像文件名。如果生成新图像,它将记得提供上次工具观察的文件名。
48
+
49
+ Human 可能会向 Visual ChatGPT 提供带有描述的新图形。描述帮助 Visual ChatGPT 理解这个图像,但 Visual ChatGPT 应该使用工具来完成以下任务,而不是直接从描述中想象。有些工具将会返回英文描述,但你对用户的聊天应当采用中文。
50
+
51
+ 总的来说,Visual ChatGPT 是一个强大的可视化对话辅助工具,可以帮助处理范围广泛的任务,并提供关于范围广泛的主题的有价值的见解和信息。
52
+
53
+ 工具列表:
54
+ ------
55
+
56
+ Visual ChatGPT 可以使用这些工具:"""
57
+
58
+ VISUAL_CHATGPT_FORMAT_INSTRUCTIONS_CN = """用户使用中文和你进行聊天,但是工具的参数应当使用英文。如果要调用工具,你必须遵循如下格式:
59
+
60
+ ```
61
+ Thought: Do I need to use a tool? Yes
62
+ Action: the action to take, should be one of [{tool_names}]
63
+ Action Input: the input to the action
64
+ Observation: the result of the action
65
+ ```
66
+
67
+ 当你不再需要继续调用工具,而是对观察结果进行总结回复时,你必须使用如下格式:
68
+
69
+
70
+ ```
71
+ Thought: Do I need to use a tool? No
72
+ {ai_prefix}: [your response here]
73
+ ```
74
+ """
75
+
76
+ VISUAL_CHATGPT_SUFFIX_CN = """你对文件名的正确性非常严格,而且永远不会伪造不存在的文件。
77
+
78
+ 开始!
79
+
80
+ 因为Visual ChatGPT是一个文本语言模型,必须使用工具去观察图片而不是依靠想象。
81
+ 推理想法和观察结果只对Visual ChatGPT可见,需要记得在最终回复时把重要的信息重复给用户,你只能给用户返回中文句子。我们一步一步思考。在你使用工具时,工具的参数只能是英文。
82
+
83
+ 聊天历史:
84
+ {chat_history}
85
+
86
+ 新输入: {input}
87
+ Thought: Do I need to use a tool? {agent_scratchpad}
88
+ """
89
+
90
+ import os
91
+
92
+ os.system('pip install git+https://github.com/IDEA-Research/GroundingDINO.git')
93
+ os.system('pip install git+https://github.com/facebookresearch/segment-anything.git')
94
+
95
+ from visual_foundation_models import *
96
+ from langchain.agents.initialize import initialize_agent
97
+ from langchain.agents.tools import Tool
98
+ from langchain.chains.conversation.memory import ConversationBufferMemory
99
+ from langchain.llms.openai import OpenAI
100
+ import re
101
+ import gradio as gr
102
+ import inspect
103
+
104
+
105
+ def cut_dialogue_history(history_memory, keep_last_n_words=400):
106
+ if history_memory is None or len(history_memory) == 0:
107
+ return history_memory
108
+ tokens = history_memory.split()
109
+ n_tokens = len(tokens)
110
+ print(f"history_memory:{history_memory}, n_tokens: {n_tokens}")
111
+ if n_tokens < keep_last_n_words:
112
+ return history_memory
113
+ paragraphs = history_memory.split('\n')
114
+ last_n_tokens = n_tokens
115
+ while last_n_tokens >= keep_last_n_words:
116
+ last_n_tokens -= len(paragraphs[0].split(' '))
117
+ paragraphs = paragraphs[1:]
118
+ return '\n' + '\n'.join(paragraphs)
119
+
120
+
121
+ class ConversationBot:
122
+ def __init__(self, load_dict):
123
+ # load_dict = {'VisualQuestionAnswering':'cuda:0', 'ImageCaptioning':'cuda:1',...}
124
+ print(f"Initializing VisualChatGPT, load_dict={load_dict}")
125
+ if 'ImageCaptioning' not in load_dict:
126
+ raise ValueError("You have to load ImageCaptioning as a basic function for VisualChatGPT")
127
+
128
+ self.models = {}
129
+ # Load Basic Foundation Models
130
+ for class_name, device in load_dict.items():
131
+ self.models[class_name] = globals()[class_name](device=device)
132
+
133
+ # Load Template Foundation Models
134
+ for class_name, module in globals().items():
135
+ if getattr(module, 'template_model', False):
136
+ template_required_names = {k for k in inspect.signature(module.__init__).parameters.keys() if
137
+ k != 'self'}
138
+ loaded_names = set([type(e).__name__ for e in self.models.values()])
139
+ if template_required_names.issubset(loaded_names):
140
+ self.models[class_name] = globals()[class_name](
141
+ **{name: self.models[name] for name in template_required_names})
142
+ self.tools = []
143
+ for instance in self.models.values():
144
+ for e in dir(instance):
145
+ if e.startswith('inference'):
146
+ func = getattr(instance, e)
147
+ self.tools.append(Tool(name=func.name, description=func.description, func=func))
148
+ self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
149
+
150
+ def run_text(self, text, state):
151
+ self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
152
+ res = self.agent({"input": text.strip()})
153
+ res['output'] = res['output'].replace("\\", "/")
154
+ response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
155
+ state = state + [(text, response)]
156
+ print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n"
157
+ f"Current Memory: {self.agent.memory.buffer}")
158
+ return state, state
159
+
160
+ def run_image(self, image, state, txt, lang):
161
+ image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
162
+ print("======>Auto Resize Image...")
163
+ img = Image.open(image.name)
164
+ width, height = img.size
165
+ ratio = min(512 / width, 512 / height)
166
+ width_new, height_new = (round(width * ratio), round(height * ratio))
167
+ width_new = int(np.round(width_new / 64.0)) * 64
168
+ height_new = int(np.round(height_new / 64.0)) * 64
169
+ img = img.resize((width_new, height_new))
170
+ img = img.convert('RGB')
171
+ img.save(image_filename, "PNG")
172
+ print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
173
+ description = self.models['ImageCaptioning'].inference(image_filename)
174
+ if lang == 'Chinese':
175
+ Human_prompt = f'\nHuman: 提供一张名为 {image_filename}的图片。它的描述是: {description}。 这些信息帮助你理解这个图像,但是你应该使用工具来完成下面的任务,而不是直接从我的描述中想象。 如果你明白了, 说 \"收到\". \n'
176
+ AI_prompt = "收到。 "
177
+ else:
178
+ Human_prompt = f'\nHuman: provide a figure named {image_filename}. The description is: {description}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
179
+ AI_prompt = "Received. "
180
+ self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
181
+ state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
182
+ print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n"
183
+ f"Current Memory: {self.agent.memory.buffer}")
184
+ return state, state, f'{txt} {image_filename} '
185
+
186
+ def init_agent(self, openai_api_key, lang):
187
+ self.memory.clear()
188
+ if lang=='English':
189
+ PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_CHATGPT_PREFIX, VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, VISUAL_CHATGPT_SUFFIX
190
+ place = "Enter text and press enter, or upload an image"
191
+ label_clear = "Clear"
192
+ else:
193
+ PREFIX, FORMAT_INSTRUCTIONS, SUFFIX = VISUAL_CHATGPT_PREFIX_CN, VISUAL_CHATGPT_FORMAT_INSTRUCTIONS_CN, VISUAL_CHATGPT_SUFFIX_CN
194
+ place = "输入文字并回车,或者上传图片"
195
+ label_clear = "清除"
196
+ self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
197
+ self.agent = initialize_agent(
198
+ self.tools,
199
+ self.llm,
200
+ agent="conversational-react-description",
201
+ verbose=True,
202
+ memory=self.memory,
203
+ return_intermediate_steps=True,
204
+ agent_kwargs={'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS, 'suffix': SUFFIX}, )
205
+
206
+ return gr.update(visible = True)
207
+
208
+ bot = ConversationBot({'Text2Box': 'cuda:0',
209
+ 'Segmenting': 'cuda:0',
210
+ 'Inpainting': 'cuda:0',
211
+ 'Text2Image': 'cuda:0',
212
+ 'ImageCaptioning': 'cuda:0',
213
+ 'VisualQuestionAnswering': 'cuda:0',
214
+ 'Image2Canny': 'cpu',
215
+ 'CannyText2Image': 'cuda:0',
216
+ 'InstructPix2Pix': 'cuda:0',
217
+ 'Image2Depth': 'cpu',
218
+ 'DepthText2Image': 'cuda:0',
219
+ })
220
+
221
+ with gr.Blocks(css="#chatbot {overflow:auto; height:500px;}") as demo:
222
+ gr.Markdown("<h3><center>Visual ChatGPT</center></h3>")
223
+ gr.Markdown(
224
+ """This is a demo to the work [Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models](https://github.com/microsoft/visual-chatgpt).<br>
225
+ This space connects ChatGPT and a series of Visual Foundation Models to enable sending and receiving images during chatting.<br>
226
+ """
227
+ )
228
+
229
+ with gr.Row():
230
+ lang = gr.Radio(choices=['Chinese', 'English'], value='English', label='Language')
231
+ openai_api_key_textbox = gr.Textbox(
232
+ placeholder="Paste your OpenAI API key here to start Visual ChatGPT(sk-...) and press Enter ↵️",
233
+ show_label=False,
234
+ lines=1,
235
+ type="password",
236
+ )
237
+
238
+ chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT")
239
+ state = gr.State([])
240
+
241
+ with gr.Row(visible=False) as input_raws:
242
+ with gr.Column(scale=0.7):
243
+ txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
244
+ with gr.Column(scale=0.10, min_width=0):
245
+ run = gr.Button("🏃‍♂️Run")
246
+ with gr.Column(scale=0.10, min_width=0):
247
+ clear = gr.Button("🔄Clear️")
248
+ with gr.Column(scale=0.10, min_width=0):
249
+ btn = gr.UploadButton("🖼️Upload", file_types=["image"])
250
+
251
+ gr.Examples(
252
+ examples=["Generate a figure of a cat running in the garden",
253
+ "Replace the cat with a dog",
254
+ "Remove the dog in this image",
255
+ "Can you detect the canny edge of this image?",
256
+ "Can you use this canny image to generate an oil painting of a dog",
257
+ "Make it like water-color painting",
258
+ "What is the background color",
259
+ "Describe this image",
260
+ "please detect the depth of this image",
261
+ "Can you use this depth image to generate a cute dog",
262
+ ],
263
+ inputs=txt
264
+ )
265
+
266
+ gr.HTML('''<br><br><br><center>You can duplicate this Space to skip the queue:
267
+ <a href="https://huggingface.co/spaces/microsoft/visual_chatgpt?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
268
+ </center>''')
269
+
270
+ openai_api_key_textbox.submit(bot.init_agent, [openai_api_key_textbox, lang], [input_raws])
271
+ txt.submit(bot.run_text, [txt, state], [chatbot, state])
272
+ txt.submit(lambda: "", None, txt)
273
+ run.click(bot.run_text, [txt, state], [chatbot, state])
274
+ run.click(lambda: "", None, txt)
275
+ btn.upload(bot.run_image, [btn, state, txt, lang], [chatbot, state, txt])
276
+ clear.click(bot.memory.clear)
277
+ clear.click(lambda: [], None, chatbot)
278
+ clear.click(lambda: [], None, state)
279
+
280
+ demo.queue(concurrency_count=10).launch(server_name="0.0.0.0", server_port=7860)
checkpoints/placeholder.txt ADDED
File without changes
image/placeholder.txt ADDED
File without changes
packages.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python3-opencv
requirements.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu113
2
+ langchain==0.0.101
3
+ torch==1.13.1
4
+ torchvision==0.14.1
5
+ wget==3.2
6
+ accelerate
7
+ addict
8
+ albumentations
9
+ basicsr
10
+ controlnet-aux
11
+ diffusers
12
+ einops
13
+ gradio
14
+ imageio
15
+ imageio-ffmpeg
16
+ invisible-watermark
17
+ kornia
18
+ numpy
19
+ omegaconf
20
+ open_clip_torch
21
+ openai
22
+ opencv-python
23
+ prettytable
24
+ safetensors
25
+ streamlit
26
+ test-tube
27
+ timm
28
+ torchmetrics
29
+ transformers
30
+ webdataset
31
+ yapf
32
+
visual_foundation_models.py ADDED
@@ -0,0 +1,1120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
2
+ from diffusers import EulerAncestralDiscreteScheduler
3
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
4
+ from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
5
+
6
+ from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
7
+ from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
8
+ from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
9
+
10
+ import os
11
+ import random
12
+ import torch
13
+ import cv2
14
+ import re
15
+ import uuid
16
+ from PIL import Image, ImageOps, ImageDraw, ImageFont
17
+ import numpy as np
18
+ import math
19
+ import inspect
20
+ import tempfile
21
+
22
+ from langchain.llms.openai import OpenAI
23
+
24
+ # Grounding DINO
25
+ import groundingdino.datasets.transforms as T
26
+ from groundingdino.models import build_model
27
+ from groundingdino.util import box_ops
28
+ from groundingdino.util.slconfig import SLConfig
29
+ from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
30
+
31
+ # segment anything
32
+ from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
33
+ import matplotlib.pyplot as plt
34
+ import wget
35
+
36
+ def prompts(name, description):
37
+ def decorator(func):
38
+ func.name = name
39
+ func.description = description
40
+ return func
41
+
42
+ return decorator
43
+
44
+ def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100):
45
+ new_size = new_image.size
46
+ old_size = old_image.size
47
+ easy_img = np.array(new_image)
48
+ gt_img_array = np.array(old_image)
49
+ pos_w = (new_size[0] - old_size[0]) // 2
50
+ pos_h = (new_size[1] - old_size[1]) // 2
51
+
52
+ kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma)
53
+ kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma)
54
+ kernel = np.multiply(kernel_h, np.transpose(kernel_w))
55
+
56
+ kernel[steps:-steps, steps:-steps] = 1
57
+ kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1]
58
+ kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)]
59
+ kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1]
60
+ kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps]
61
+ kernel = np.expand_dims(kernel, 2)
62
+ kernel = np.repeat(kernel, 3, 2)
63
+
64
+ weight = np.linspace(0, 1, steps)
65
+ top = np.expand_dims(weight, 1)
66
+ top = np.repeat(top, old_size[0] - 2 * steps, 1)
67
+ top = np.expand_dims(top, 2)
68
+ top = np.repeat(top, 3, 2)
69
+
70
+ weight = np.linspace(1, 0, steps)
71
+ down = np.expand_dims(weight, 1)
72
+ down = np.repeat(down, old_size[0] - 2 * steps, 1)
73
+ down = np.expand_dims(down, 2)
74
+ down = np.repeat(down, 3, 2)
75
+
76
+ weight = np.linspace(0, 1, steps)
77
+ left = np.expand_dims(weight, 0)
78
+ left = np.repeat(left, old_size[1] - 2 * steps, 0)
79
+ left = np.expand_dims(left, 2)
80
+ left = np.repeat(left, 3, 2)
81
+
82
+ weight = np.linspace(1, 0, steps)
83
+ right = np.expand_dims(weight, 0)
84
+ right = np.repeat(right, old_size[1] - 2 * steps, 0)
85
+ right = np.expand_dims(right, 2)
86
+ right = np.repeat(right, 3, 2)
87
+
88
+ kernel[:steps, steps:-steps] = top
89
+ kernel[-steps:, steps:-steps] = down
90
+ kernel[steps:-steps, :steps] = left
91
+ kernel[steps:-steps, -steps:] = right
92
+
93
+ pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]]
94
+ gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img
95
+ gaussian_gt_img = gaussian_gt_img.astype(np.int64)
96
+ easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img
97
+ gaussian_img = Image.fromarray(easy_img)
98
+ return gaussian_img
99
+
100
+ def get_new_image_name(org_img_name, func_name="update"):
101
+ head_tail = os.path.split(org_img_name)
102
+ head = head_tail[0]
103
+ tail = head_tail[1]
104
+ name_split = tail.split('.')[0].split('_')
105
+ this_new_uuid = str(uuid.uuid4())[0:4]
106
+ if len(name_split) == 1:
107
+ most_org_file_name = name_split[0]
108
+ recent_prev_file_name = name_split[0]
109
+ new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
110
+ else:
111
+ assert len(name_split) == 4
112
+ most_org_file_name = name_split[3]
113
+ recent_prev_file_name = name_split[0]
114
+ new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
115
+ return os.path.join(head, new_file_name)
116
+
117
+ def seed_everything(seed):
118
+ random.seed(seed)
119
+ np.random.seed(seed)
120
+ torch.manual_seed(seed)
121
+ torch.cuda.manual_seed_all(seed)
122
+ return seed
123
+
124
+ class InstructPix2Pix:
125
+ def __init__(self, device):
126
+ print(f"Initializing InstructPix2Pix to {device}")
127
+ self.device = device
128
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
129
+ self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix",
130
+ safety_checker=None,
131
+ torch_dtype=self.torch_dtype).to(device)
132
+ self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
133
+
134
+ @prompts(name="Instruct Image Using Text",
135
+ description="useful when you want to the style of the image to be like the text. "
136
+ "like: make it look like a painting. or make it like a robot. "
137
+ "The input to this tool should be a comma separated string of two, "
138
+ "representing the image_path and the text. ")
139
+ def inference(self, inputs):
140
+ """Change style of image."""
141
+ print("===>Starting InstructPix2Pix Inference")
142
+ image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
143
+ original_image = Image.open(image_path)
144
+ image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0]
145
+ updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
146
+ image.save(updated_image_path)
147
+ print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
148
+ f"Output Image: {updated_image_path}")
149
+ return updated_image_path
150
+
151
+
152
+ class Text2Image:
153
+ def __init__(self, device):
154
+ print(f"Initializing Text2Image to {device}")
155
+ self.device = device
156
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
157
+ self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",
158
+ torch_dtype=self.torch_dtype)
159
+ self.pipe.to(device)
160
+ self.a_prompt = 'best quality, extremely detailed'
161
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
162
+ 'fewer digits, cropped, worst quality, low quality'
163
+
164
+ @prompts(name="Generate Image From User Input Text",
165
+ description="useful when you want to generate an image from a user input text and save it to a file. "
166
+ "like: generate an image of an object or something, or generate an image that includes some objects. "
167
+ "The input to this tool should be a string, representing the text used to generate image. ")
168
+ def inference(self, text):
169
+ image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
170
+ prompt = text + ', ' + self.a_prompt
171
+ image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
172
+ image.save(image_filename)
173
+ print(
174
+ f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}")
175
+ return image_filename
176
+
177
+
178
+ class ImageCaptioning:
179
+ def __init__(self, device):
180
+ print(f"Initializing ImageCaptioning to {device}")
181
+ self.device = device
182
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
183
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
184
+ self.model = BlipForConditionalGeneration.from_pretrained(
185
+ "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device)
186
+
187
+ @prompts(name="Get Photo Description",
188
+ description="useful when you want to know what is inside the photo. receives image_path as input. "
189
+ "The input to this tool should be a string, representing the image_path. ")
190
+ def inference(self, image_path):
191
+ inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype)
192
+ out = self.model.generate(**inputs)
193
+ captions = self.processor.decode(out[0], skip_special_tokens=True)
194
+ print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}")
195
+ return captions
196
+
197
+
198
+ class Image2Canny:
199
+ def __init__(self, device):
200
+ print("Initializing Image2Canny")
201
+ self.low_threshold = 100
202
+ self.high_threshold = 200
203
+
204
+ @prompts(name="Edge Detection On Image",
205
+ description="useful when you want to detect the edge of the image. "
206
+ "like: detect the edges of this image, or canny detection on image, "
207
+ "or perform edge detection on this image, or detect the canny image of this image. "
208
+ "The input to this tool should be a string, representing the image_path")
209
+ def inference(self, inputs):
210
+ image = Image.open(inputs)
211
+ image = np.array(image)
212
+ canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
213
+ canny = canny[:, :, None]
214
+ canny = np.concatenate([canny, canny, canny], axis=2)
215
+ canny = Image.fromarray(canny)
216
+ updated_image_path = get_new_image_name(inputs, func_name="edge")
217
+ canny.save(updated_image_path)
218
+ print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}")
219
+ return updated_image_path
220
+
221
+
222
+ class CannyText2Image:
223
+ def __init__(self, device):
224
+ print(f"Initializing CannyText2Image to {device}")
225
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
226
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny",
227
+ torch_dtype=self.torch_dtype)
228
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
229
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
230
+ torch_dtype=self.torch_dtype)
231
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
232
+ self.pipe.to(device)
233
+ self.seed = -1
234
+ self.a_prompt = 'best quality, extremely detailed'
235
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
236
+ 'fewer digits, cropped, worst quality, low quality'
237
+
238
+ @prompts(name="Generate Image Condition On Canny Image",
239
+ description="useful when you want to generate a new real image from both the user description and a canny image."
240
+ " like: generate a real image of a object or something from this canny image,"
241
+ " or generate a new real image of a object or something from this edge image. "
242
+ "The input to this tool should be a comma separated string of two, "
243
+ "representing the image_path and the user description. ")
244
+ def inference(self, inputs):
245
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
246
+ image = Image.open(image_path)
247
+ self.seed = random.randint(0, 65535)
248
+ seed_everything(self.seed)
249
+ prompt = f'{instruct_text}, {self.a_prompt}'
250
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
251
+ guidance_scale=9.0).images[0]
252
+ updated_image_path = get_new_image_name(image_path, func_name="canny2image")
253
+ image.save(updated_image_path)
254
+ print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, "
255
+ f"Output Text: {updated_image_path}")
256
+ return updated_image_path
257
+
258
+
259
+ class Image2Line:
260
+ def __init__(self, device):
261
+ print("Initializing Image2Line")
262
+ self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
263
+
264
+ @prompts(name="Line Detection On Image",
265
+ description="useful when you want to detect the straight line of the image. "
266
+ "like: detect the straight lines of this image, or straight line detection on image, "
267
+ "or perform straight line detection on this image, or detect the straight line image of this image. "
268
+ "The input to this tool should be a string, representing the image_path")
269
+ def inference(self, inputs):
270
+ image = Image.open(inputs)
271
+ mlsd = self.detector(image)
272
+ updated_image_path = get_new_image_name(inputs, func_name="line-of")
273
+ mlsd.save(updated_image_path)
274
+ print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}")
275
+ return updated_image_path
276
+
277
+
278
+ class LineText2Image:
279
+ def __init__(self, device):
280
+ print(f"Initializing LineText2Image to {device}")
281
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
282
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd",
283
+ torch_dtype=self.torch_dtype)
284
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
285
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
286
+ torch_dtype=self.torch_dtype
287
+ )
288
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
289
+ self.pipe.to(device)
290
+ self.seed = -1
291
+ self.a_prompt = 'best quality, extremely detailed'
292
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
293
+ 'fewer digits, cropped, worst quality, low quality'
294
+
295
+ @prompts(name="Generate Image Condition On Line Image",
296
+ description="useful when you want to generate a new real image from both the user description "
297
+ "and a straight line image. "
298
+ "like: generate a real image of a object or something from this straight line image, "
299
+ "or generate a new real image of a object or something from this straight lines. "
300
+ "The input to this tool should be a comma separated string of two, "
301
+ "representing the image_path and the user description. ")
302
+ def inference(self, inputs):
303
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
304
+ image = Image.open(image_path)
305
+ self.seed = random.randint(0, 65535)
306
+ seed_everything(self.seed)
307
+ prompt = f'{instruct_text}, {self.a_prompt}'
308
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
309
+ guidance_scale=9.0).images[0]
310
+ updated_image_path = get_new_image_name(image_path, func_name="line2image")
311
+ image.save(updated_image_path)
312
+ print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, "
313
+ f"Output Text: {updated_image_path}")
314
+ return updated_image_path
315
+
316
+
317
+ class Image2Hed:
318
+ def __init__(self, device):
319
+ print("Initializing Image2Hed")
320
+ self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
321
+
322
+ @prompts(name="Hed Detection On Image",
323
+ description="useful when you want to detect the soft hed boundary of the image. "
324
+ "like: detect the soft hed boundary of this image, or hed boundary detection on image, "
325
+ "or perform hed boundary detection on this image, or detect soft hed boundary image of this image. "
326
+ "The input to this tool should be a string, representing the image_path")
327
+ def inference(self, inputs):
328
+ image = Image.open(inputs)
329
+ hed = self.detector(image)
330
+ updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
331
+ hed.save(updated_image_path)
332
+ print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}")
333
+ return updated_image_path
334
+
335
+
336
+ class HedText2Image:
337
+ def __init__(self, device):
338
+ print(f"Initializing HedText2Image to {device}")
339
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
340
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed",
341
+ torch_dtype=self.torch_dtype)
342
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
343
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
344
+ torch_dtype=self.torch_dtype
345
+ )
346
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
347
+ self.pipe.to(device)
348
+ self.seed = -1
349
+ self.a_prompt = 'best quality, extremely detailed'
350
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
351
+ 'fewer digits, cropped, worst quality, low quality'
352
+
353
+ @prompts(name="Generate Image Condition On Soft Hed Boundary Image",
354
+ description="useful when you want to generate a new real image from both the user description "
355
+ "and a soft hed boundary image. "
356
+ "like: generate a real image of a object or something from this soft hed boundary image, "
357
+ "or generate a new real image of a object or something from this hed boundary. "
358
+ "The input to this tool should be a comma separated string of two, "
359
+ "representing the image_path and the user description")
360
+ def inference(self, inputs):
361
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
362
+ image = Image.open(image_path)
363
+ self.seed = random.randint(0, 65535)
364
+ seed_everything(self.seed)
365
+ prompt = f'{instruct_text}, {self.a_prompt}'
366
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
367
+ guidance_scale=9.0).images[0]
368
+ updated_image_path = get_new_image_name(image_path, func_name="hed2image")
369
+ image.save(updated_image_path)
370
+ print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, "
371
+ f"Output Image: {updated_image_path}")
372
+ return updated_image_path
373
+
374
+
375
+ class Image2Scribble:
376
+ def __init__(self, device):
377
+ print("Initializing Image2Scribble")
378
+ self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet')
379
+
380
+ @prompts(name="Sketch Detection On Image",
381
+ description="useful when you want to generate a scribble of the image. "
382
+ "like: generate a scribble of this image, or generate a sketch from this image, "
383
+ "detect the sketch from this image. "
384
+ "The input to this tool should be a string, representing the image_path")
385
+ def inference(self, inputs):
386
+ image = Image.open(inputs)
387
+ scribble = self.detector(image, scribble=True)
388
+ updated_image_path = get_new_image_name(inputs, func_name="scribble")
389
+ scribble.save(updated_image_path)
390
+ print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}")
391
+ return updated_image_path
392
+
393
+
394
+ class ScribbleText2Image:
395
+ def __init__(self, device):
396
+ print(f"Initializing ScribbleText2Image to {device}")
397
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
398
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble",
399
+ torch_dtype=self.torch_dtype)
400
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
401
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
402
+ torch_dtype=self.torch_dtype
403
+ )
404
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
405
+ self.pipe.to(device)
406
+ self.seed = -1
407
+ self.a_prompt = 'best quality, extremely detailed'
408
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
409
+ 'fewer digits, cropped, worst quality, low quality'
410
+
411
+ @prompts(name="Generate Image Condition On Sketch Image",
412
+ description="useful when you want to generate a new real image from both the user description and "
413
+ "a scribble image or a sketch image. "
414
+ "The input to this tool should be a comma separated string of two, "
415
+ "representing the image_path and the user description")
416
+ def inference(self, inputs):
417
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
418
+ image = Image.open(image_path)
419
+ self.seed = random.randint(0, 65535)
420
+ seed_everything(self.seed)
421
+ prompt = f'{instruct_text}, {self.a_prompt}'
422
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
423
+ guidance_scale=9.0).images[0]
424
+ updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
425
+ image.save(updated_image_path)
426
+ print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, "
427
+ f"Output Image: {updated_image_path}")
428
+ return updated_image_path
429
+
430
+
431
+ class Image2Pose:
432
+ def __init__(self, device):
433
+ print("Initializing Image2Pose")
434
+ self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
435
+
436
+ @prompts(name="Pose Detection On Image",
437
+ description="useful when you want to detect the human pose of the image. "
438
+ "like: generate human poses of this image, or generate a pose image from this image. "
439
+ "The input to this tool should be a string, representing the image_path")
440
+ def inference(self, inputs):
441
+ image = Image.open(inputs)
442
+ pose = self.detector(image)
443
+ updated_image_path = get_new_image_name(inputs, func_name="human-pose")
444
+ pose.save(updated_image_path)
445
+ print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}")
446
+ return updated_image_path
447
+
448
+
449
+ class PoseText2Image:
450
+ def __init__(self, device):
451
+ print(f"Initializing PoseText2Image to {device}")
452
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
453
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose",
454
+ torch_dtype=self.torch_dtype)
455
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
456
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
457
+ torch_dtype=self.torch_dtype)
458
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
459
+ self.pipe.to(device)
460
+ self.num_inference_steps = 20
461
+ self.seed = -1
462
+ self.unconditional_guidance_scale = 9.0
463
+ self.a_prompt = 'best quality, extremely detailed'
464
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
465
+ ' fewer digits, cropped, worst quality, low quality'
466
+
467
+ @prompts(name="Generate Image Condition On Pose Image",
468
+ description="useful when you want to generate a new real image from both the user description "
469
+ "and a human pose image. "
470
+ "like: generate a real image of a human from this human pose image, "
471
+ "or generate a new real image of a human from this pose. "
472
+ "The input to this tool should be a comma separated string of two, "
473
+ "representing the image_path and the user description")
474
+ def inference(self, inputs):
475
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
476
+ image = Image.open(image_path)
477
+ self.seed = random.randint(0, 65535)
478
+ seed_everything(self.seed)
479
+ prompt = f'{instruct_text}, {self.a_prompt}'
480
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
481
+ guidance_scale=9.0).images[0]
482
+ updated_image_path = get_new_image_name(image_path, func_name="pose2image")
483
+ image.save(updated_image_path)
484
+ print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, "
485
+ f"Output Image: {updated_image_path}")
486
+ return updated_image_path
487
+
488
+
489
+ class SegText2Image:
490
+ def __init__(self, device):
491
+ print(f"Initializing SegText2Image to {device}")
492
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
493
+ self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg",
494
+ torch_dtype=self.torch_dtype)
495
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
496
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
497
+ torch_dtype=self.torch_dtype)
498
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
499
+ self.pipe.to(device)
500
+ self.seed = -1
501
+ self.a_prompt = 'best quality, extremely detailed'
502
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
503
+ ' fewer digits, cropped, worst quality, low quality'
504
+
505
+ @prompts(name="Generate Image Condition On Segmentations",
506
+ description="useful when you want to generate a new real image from both the user description and segmentations. "
507
+ "like: generate a real image of a object or something from this segmentation image, "
508
+ "or generate a new real image of a object or something from these segmentations. "
509
+ "The input to this tool should be a comma separated string of two, "
510
+ "representing the image_path and the user description")
511
+ def inference(self, inputs):
512
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
513
+ image = Image.open(image_path)
514
+ self.seed = random.randint(0, 65535)
515
+ seed_everything(self.seed)
516
+ prompt = f'{instruct_text}, {self.a_prompt}'
517
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
518
+ guidance_scale=9.0).images[0]
519
+ updated_image_path = get_new_image_name(image_path, func_name="segment2image")
520
+ image.save(updated_image_path)
521
+ print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, "
522
+ f"Output Image: {updated_image_path}")
523
+ return updated_image_path
524
+
525
+
526
+ class Image2Depth:
527
+ def __init__(self, device):
528
+ print("Initializing Image2Depth")
529
+ self.depth_estimator = pipeline('depth-estimation')
530
+
531
+ @prompts(name="Predict Depth On Image",
532
+ description="useful when you want to detect depth of the image. like: generate the depth from this image, "
533
+ "or detect the depth map on this image, or predict the depth for this image. "
534
+ "The input to this tool should be a string, representing the image_path")
535
+ def inference(self, inputs):
536
+ image = Image.open(inputs)
537
+ depth = self.depth_estimator(image)['depth']
538
+ depth = np.array(depth)
539
+ depth = depth[:, :, None]
540
+ depth = np.concatenate([depth, depth, depth], axis=2)
541
+ depth = Image.fromarray(depth)
542
+ updated_image_path = get_new_image_name(inputs, func_name="depth")
543
+ depth.save(updated_image_path)
544
+ print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}")
545
+ return updated_image_path
546
+
547
+
548
+ class DepthText2Image:
549
+ def __init__(self, device):
550
+ print(f"Initializing DepthText2Image to {device}")
551
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
552
+ self.controlnet = ControlNetModel.from_pretrained(
553
+ "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype)
554
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
555
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
556
+ torch_dtype=self.torch_dtype)
557
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
558
+ self.pipe.to(device)
559
+ self.seed = -1
560
+ self.a_prompt = 'best quality, extremely detailed'
561
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
562
+ ' fewer digits, cropped, worst quality, low quality'
563
+
564
+ @prompts(name="Generate Image Condition On Depth",
565
+ description="useful when you want to generate a new real image from both the user description and depth image. "
566
+ "like: generate a real image of a object or something from this depth image, "
567
+ "or generate a new real image of a object or something from the depth map. "
568
+ "The input to this tool should be a comma separated string of two, "
569
+ "representing the image_path and the user description")
570
+ def inference(self, inputs):
571
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
572
+ image = Image.open(image_path)
573
+ self.seed = random.randint(0, 65535)
574
+ seed_everything(self.seed)
575
+ prompt = f'{instruct_text}, {self.a_prompt}'
576
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
577
+ guidance_scale=9.0).images[0]
578
+ updated_image_path = get_new_image_name(image_path, func_name="depth2image")
579
+ image.save(updated_image_path)
580
+ print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, "
581
+ f"Output Image: {updated_image_path}")
582
+ return updated_image_path
583
+
584
+
585
+ class Image2Normal:
586
+ def __init__(self, device):
587
+ print("Initializing Image2Normal")
588
+ self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas")
589
+ self.bg_threhold = 0.4
590
+
591
+ @prompts(name="Predict Normal Map On Image",
592
+ description="useful when you want to detect norm map of the image. "
593
+ "like: generate normal map from this image, or predict normal map of this image. "
594
+ "The input to this tool should be a string, representing the image_path")
595
+ def inference(self, inputs):
596
+ image = Image.open(inputs)
597
+ original_size = image.size
598
+ image = self.depth_estimator(image)['predicted_depth'][0]
599
+ image = image.numpy()
600
+ image_depth = image.copy()
601
+ image_depth -= np.min(image_depth)
602
+ image_depth /= np.max(image_depth)
603
+ x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
604
+ x[image_depth < self.bg_threhold] = 0
605
+ y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
606
+ y[image_depth < self.bg_threhold] = 0
607
+ z = np.ones_like(x) * np.pi * 2.0
608
+ image = np.stack([x, y, z], axis=2)
609
+ image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
610
+ image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
611
+ image = Image.fromarray(image)
612
+ image = image.resize(original_size)
613
+ updated_image_path = get_new_image_name(inputs, func_name="normal-map")
614
+ image.save(updated_image_path)
615
+ print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}")
616
+ return updated_image_path
617
+
618
+
619
+ class NormalText2Image:
620
+ def __init__(self, device):
621
+ print(f"Initializing NormalText2Image to {device}")
622
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
623
+ self.controlnet = ControlNetModel.from_pretrained(
624
+ "fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype)
625
+ self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
626
+ "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None,
627
+ torch_dtype=self.torch_dtype)
628
+ self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
629
+ self.pipe.to(device)
630
+ self.seed = -1
631
+ self.a_prompt = 'best quality, extremely detailed'
632
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \
633
+ ' fewer digits, cropped, worst quality, low quality'
634
+
635
+ @prompts(name="Generate Image Condition On Normal Map",
636
+ description="useful when you want to generate a new real image from both the user description and normal map. "
637
+ "like: generate a real image of a object or something from this normal map, "
638
+ "or generate a new real image of a object or something from the normal map. "
639
+ "The input to this tool should be a comma separated string of two, "
640
+ "representing the image_path and the user description")
641
+ def inference(self, inputs):
642
+ image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
643
+ image = Image.open(image_path)
644
+ self.seed = random.randint(0, 65535)
645
+ seed_everything(self.seed)
646
+ prompt = f'{instruct_text}, {self.a_prompt}'
647
+ image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt,
648
+ guidance_scale=9.0).images[0]
649
+ updated_image_path = get_new_image_name(image_path, func_name="normal2image")
650
+ image.save(updated_image_path)
651
+ print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, "
652
+ f"Output Image: {updated_image_path}")
653
+ return updated_image_path
654
+
655
+
656
+ class VisualQuestionAnswering:
657
+ def __init__(self, device):
658
+ print(f"Initializing VisualQuestionAnswering to {device}")
659
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
660
+ self.device = device
661
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
662
+ self.model = BlipForQuestionAnswering.from_pretrained(
663
+ "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device)
664
+
665
+ @prompts(name="Answer Question About The Image",
666
+ description="useful when you need an answer for a question based on an image. "
667
+ "like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
668
+ "The input to this tool should be a comma separated string of two, representing the image_path and the question")
669
+ def inference(self, inputs):
670
+ image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
671
+ raw_image = Image.open(image_path).convert('RGB')
672
+ inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype)
673
+ out = self.model.generate(**inputs)
674
+ answer = self.processor.decode(out[0], skip_special_tokens=True)
675
+ print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
676
+ f"Output Answer: {answer}")
677
+ return answer
678
+
679
+
680
+ class Segmenting:
681
+ def __init__(self, device):
682
+ print(f"Inintializing Segmentation to {device}")
683
+ self.device = device
684
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
685
+ self.model_checkpoint_path = os.path.join("checkpoints", "sam")
686
+
687
+ self.download_parameters()
688
+ self.sam = build_sam(checkpoint=self.model_checkpoint_path).to(device)
689
+ self.sam_predictor = SamPredictor(self.sam)
690
+ self.mask_generator = SamAutomaticMaskGenerator(self.sam)
691
+
692
+ def download_parameters(self):
693
+ url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
694
+ if not os.path.exists(self.model_checkpoint_path):
695
+ wget.download(url, out=self.model_checkpoint_path)
696
+
697
+ def show_mask(self, mask, ax, random_color=False):
698
+ if random_color:
699
+ color = np.concatenate([np.random.random(3), np.array([1])], axis=0)
700
+ else:
701
+ color = np.array([30 / 255, 144 / 255, 255 / 255, 1])
702
+ h, w = mask.shape[-2:]
703
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
704
+ ax.imshow(mask_image)
705
+
706
+ def show_box(self, box, ax, label):
707
+ x0, y0 = box[0], box[1]
708
+ w, h = box[2] - box[0], box[3] - box[1]
709
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
710
+ ax.text(x0, y0, label)
711
+
712
+ def get_mask_with_boxes(self, image_pil, image, boxes_filt):
713
+
714
+ size = image_pil.size
715
+ H, W = size[1], size[0]
716
+ for i in range(boxes_filt.size(0)):
717
+ boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
718
+ boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
719
+ boxes_filt[i][2:] += boxes_filt[i][:2]
720
+
721
+ boxes_filt = boxes_filt.cpu()
722
+ transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device)
723
+
724
+ masks, _, _ = self.sam_predictor.predict_torch(
725
+ point_coords=None,
726
+ point_labels=None,
727
+ boxes=transformed_boxes.to(self.device),
728
+ multimask_output=False,
729
+ )
730
+ return masks
731
+
732
+ def segment_image_with_boxes(self, image_pil, image_path, boxes_filt, pred_phrases):
733
+
734
+ image = cv2.imread(image_path)
735
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
736
+ self.sam_predictor.set_image(image)
737
+
738
+ masks = self.get_mask_with_boxes(image_pil, image, boxes_filt)
739
+
740
+ # draw output image
741
+ plt.figure(figsize=(10, 10))
742
+ plt.imshow(image)
743
+ for mask in masks:
744
+ self.show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
745
+
746
+ updated_image_path = get_new_image_name(image_path, func_name="segmentation")
747
+ plt.axis('off')
748
+ plt.savefig(
749
+ updated_image_path,
750
+ bbox_inches="tight", dpi=300, pad_inches=0.0
751
+ )
752
+ return updated_image_path
753
+
754
+ @prompts(name="Segment the Image",
755
+ description="useful when you want to segment all the part of the image, but not segment a certain object."
756
+ "like: segment all the object in this image, or generate segmentations on this image, "
757
+ "or segment the image,"
758
+ "or perform segmentation on this image, "
759
+ "or segment all the object in this image."
760
+ "The input to this tool should be a string, representing the image_path")
761
+ def inference_all(self, image_path):
762
+ image = cv2.imread(image_path)
763
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
764
+ masks = self.mask_generator.generate(image)
765
+ plt.figure(figsize=(20, 20))
766
+ plt.imshow(image)
767
+ if len(masks) == 0:
768
+ return
769
+ sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
770
+ ax = plt.gca()
771
+ ax.set_autoscale_on(False)
772
+ polygons = []
773
+ color = []
774
+ for ann in sorted_anns:
775
+ m = ann['segmentation']
776
+ img = np.ones((m.shape[0], m.shape[1], 3))
777
+ color_mask = np.random.random((1, 3)).tolist()[0]
778
+ for i in range(3):
779
+ img[:, :, i] = color_mask[i]
780
+ ax.imshow(np.dstack((img, m)))
781
+
782
+ updated_image_path = get_new_image_name(image_path, func_name="segment-image")
783
+ plt.axis('off')
784
+ plt.savefig(
785
+ updated_image_path,
786
+ bbox_inches="tight", dpi=300, pad_inches=0.0
787
+ )
788
+ return updated_image_path
789
+
790
+
791
+ class Text2Box:
792
+ def __init__(self, device):
793
+ print(f"Initializing ObjectDetection to {device}")
794
+ self.device = device
795
+ self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
796
+ self.model_checkpoint_path = os.path.join("checkpoints", "groundingdino")
797
+ self.model_config_path = os.path.join("checkpoints", "grounding_config.py")
798
+ self.download_parameters()
799
+ self.box_threshold = 0.3
800
+ self.text_threshold = 0.25
801
+ self.grounding = (self.load_model()).to(self.device)
802
+
803
+ def download_parameters(self):
804
+ url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
805
+ if not os.path.exists(self.model_checkpoint_path):
806
+ wget.download(url, out=self.model_checkpoint_path)
807
+ config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py"
808
+ if not os.path.exists(self.model_config_path):
809
+ wget.download(config_url, out=self.model_config_path)
810
+
811
+ def load_image(self, image_path):
812
+ # load image
813
+ image_pil = Image.open(image_path).convert("RGB") # load image
814
+
815
+ transform = T.Compose(
816
+ [
817
+ T.RandomResize([512], max_size=1333),
818
+ T.ToTensor(),
819
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
820
+ ]
821
+ )
822
+ image, _ = transform(image_pil, None) # 3, h, w
823
+ return image_pil, image
824
+
825
+ def load_model(self):
826
+ args = SLConfig.fromfile(self.model_config_path)
827
+ args.device = self.device
828
+ model = build_model(args)
829
+ checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
830
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
831
+ print(load_res)
832
+ _ = model.eval()
833
+ return model
834
+
835
+ def get_grounding_boxes(self, image, caption, with_logits=True):
836
+ caption = caption.lower()
837
+ caption = caption.strip()
838
+ if not caption.endswith("."):
839
+ caption = caption + "."
840
+ image = image.to(self.device)
841
+ with torch.no_grad():
842
+ outputs = self.grounding(image[None], captions=[caption])
843
+ logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
844
+ boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
845
+ logits.shape[0]
846
+
847
+ # filter output
848
+ logits_filt = logits.clone()
849
+ boxes_filt = boxes.clone()
850
+ filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
851
+ logits_filt = logits_filt[filt_mask] # num_filt, 256
852
+ boxes_filt = boxes_filt[filt_mask] # num_filt, 4
853
+ logits_filt.shape[0]
854
+
855
+ # get phrase
856
+ tokenlizer = self.grounding.tokenizer
857
+ tokenized = tokenlizer(caption)
858
+ # build pred
859
+ pred_phrases = []
860
+ for logit, box in zip(logits_filt, boxes_filt):
861
+ pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
862
+ if with_logits:
863
+ pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
864
+ else:
865
+ pred_phrases.append(pred_phrase)
866
+
867
+ return boxes_filt, pred_phrases
868
+
869
+ def plot_boxes_to_image(self, image_pil, tgt):
870
+ H, W = tgt["size"]
871
+ boxes = tgt["boxes"]
872
+ labels = tgt["labels"]
873
+ assert len(boxes) == len(labels), "boxes and labels must have same length"
874
+
875
+ draw = ImageDraw.Draw(image_pil)
876
+ mask = Image.new("L", image_pil.size, 0)
877
+ mask_draw = ImageDraw.Draw(mask)
878
+
879
+ # draw boxes and masks
880
+ for box, label in zip(boxes, labels):
881
+ # from 0..1 to 0..W, 0..H
882
+ box = box * torch.Tensor([W, H, W, H])
883
+ # from xywh to xyxy
884
+ box[:2] -= box[2:] / 2
885
+ box[2:] += box[:2]
886
+ # random color
887
+ color = tuple(np.random.randint(0, 255, size=3).tolist())
888
+ # draw
889
+ x0, y0, x1, y1 = box
890
+ x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
891
+
892
+ draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
893
+ # draw.text((x0, y0), str(label), fill=color)
894
+
895
+ font = ImageFont.load_default()
896
+ if hasattr(font, "getbbox"):
897
+ bbox = draw.textbbox((x0, y0), str(label), font)
898
+ else:
899
+ w, h = draw.textsize(str(label), font)
900
+ bbox = (x0, y0, w + x0, y0 + h)
901
+ # bbox = draw.textbbox((x0, y0), str(label))
902
+ draw.rectangle(bbox, fill=color)
903
+ draw.text((x0, y0), str(label), fill="white")
904
+
905
+ mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2)
906
+
907
+ return image_pil, mask
908
+
909
+ @prompts(name="Detect the Give Object",
910
+ description="useful when you only want to detect or find out given objects in the picture"
911
+ "The input to this tool should be a comma separated string of two, "
912
+ "representing the image_path, the text description of the object to be found")
913
+ def inference(self, inputs):
914
+ image_path, det_prompt = inputs.split(",")
915
+ print(f"image_path={image_path}, text_prompt={det_prompt}")
916
+ image_pil, image = self.load_image(image_path)
917
+
918
+ boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt)
919
+
920
+ size = image_pil.size
921
+ pred_dict = {
922
+ "boxes": boxes_filt,
923
+ "size": [size[1], size[0]], # H,W
924
+ "labels": pred_phrases, }
925
+
926
+ image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0]
927
+
928
+ updated_image_path = get_new_image_name(image_path, func_name="detect-something")
929
+ updated_image = image_with_box.resize(size)
930
+ updated_image.save(updated_image_path)
931
+ print(
932
+ f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, "
933
+ f"Output Image: {updated_image_path}")
934
+ return updated_image_path
935
+
936
+
937
+ class Inpainting:
938
+ def __init__(self, device):
939
+ self.device = device
940
+ self.revision = 'fp16' if 'cuda' in self.device else None
941
+ self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32
942
+
943
+ self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
944
+ "runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device)
945
+
946
+ def __call__(self, prompt, image, mask_image, height=512, width=512, num_inference_steps=50):
947
+ update_image = self.inpaint(prompt=prompt, image=image.resize((width, height)),
948
+ mask_image=mask_image.resize((width, height)), height=height, width=width,
949
+ num_inference_steps=num_inference_steps).images[0]
950
+ return update_image
951
+
952
+
953
+ class InfinityOutPainting:
954
+ template_model = True # Add this line to show this is a template model.
955
+ def __init__(self, ImageCaptioning, Inpainting, VisualQuestionAnswering):
956
+ self.ImageCaption = ImageCaptioning
957
+ self.inpaint = Inpainting
958
+ self.ImageVQA = VisualQuestionAnswering
959
+ self.a_prompt = 'best quality, extremely detailed'
960
+ self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \
961
+ 'fewer digits, cropped, worst quality, low quality'
962
+
963
+ def get_BLIP_vqa(self, image, question):
964
+ inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device,
965
+ self.ImageVQA.torch_dtype)
966
+ out = self.ImageVQA.model.generate(**inputs)
967
+ answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True)
968
+ print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}")
969
+ return answer
970
+
971
+ def get_BLIP_caption(self, image):
972
+ inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device,
973
+ self.ImageCaption.torch_dtype)
974
+ out = self.ImageCaption.model.generate(**inputs)
975
+ BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True)
976
+ return BLIP_caption
977
+
978
+ def get_imagine_caption(self, image, imagine):
979
+ BLIP_caption = self.get_BLIP_caption(image)
980
+ caption = BLIP_caption
981
+ print(f'Prompt: {caption}')
982
+ return caption
983
+
984
+ def resize_image(self, image, max_size=1000000, multiple=8):
985
+ aspect_ratio = image.size[0] / image.size[1]
986
+ new_width = int(math.sqrt(max_size * aspect_ratio))
987
+ new_height = int(new_width / aspect_ratio)
988
+ new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple)
989
+ return image.resize((new_width, new_height))
990
+
991
+ def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt):
992
+ old_img = original_img
993
+ while (old_img.size != tosize):
994
+ prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine)
995
+ crop_w = 15 if old_img.size[0] != tosize[0] else 0
996
+ crop_h = 15 if old_img.size[1] != tosize[1] else 0
997
+ old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h))
998
+ temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0],
999
+ expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[
1000
+ 1])
1001
+ temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size,
1002
+ color="white")
1003
+ x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2
1004
+ temp_canvas.paste(old_img, (x, y))
1005
+ temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height))
1006
+ resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask)
1007
+ image = self.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask,
1008
+ height=resized_temp_canvas.height, width=resized_temp_canvas.width,
1009
+ num_inference_steps=50).resize(
1010
+ (temp_canvas.width, temp_canvas.height), Image.ANTIALIAS)
1011
+ image = blend_gt2pt(old_img, image)
1012
+ old_img = image
1013
+ return old_img
1014
+
1015
+ @prompts(name="Extend An Image",
1016
+ description="useful when you need to extend an image into a larger image."
1017
+ "like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. "
1018
+ "The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight")
1019
+ def inference(self, inputs):
1020
+ image_path, resolution = inputs.split(',')
1021
+ width, height = resolution.split('x')
1022
+ tosize = (int(width), int(height))
1023
+ image = Image.open(image_path)
1024
+ image = ImageOps.crop(image, (10, 10, 10, 10))
1025
+ out_painted_image = self.dowhile(image, tosize, 4, True, False)
1026
+ updated_image_path = get_new_image_name(image_path, func_name="outpainting")
1027
+ out_painted_image.save(updated_image_path)
1028
+ print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, "
1029
+ f"Output Image: {updated_image_path}")
1030
+ return updated_image_path
1031
+
1032
+
1033
+ class ObjectSegmenting:
1034
+ template_model = True # Add this line to show this is a template model.
1035
+
1036
+ def __init__(self, Text2Box: Text2Box, Segmenting: Segmenting):
1037
+ # self.llm = OpenAI(temperature=0)
1038
+ self.grounding = Text2Box
1039
+ self.sam = Segmenting
1040
+
1041
+ @prompts(name="Segment the given object",
1042
+ description="useful when you only want to segment the certain objects in the picture"
1043
+ "according to the given text"
1044
+ "like: segment the cat,"
1045
+ "or can you segment an obeject for me"
1046
+ "The input to this tool should be a comma separated string of two, "
1047
+ "representing the image_path, the text description of the object to be found")
1048
+ def inference(self, inputs):
1049
+ image_path, det_prompt = inputs.split(",")
1050
+ print(f"image_path={image_path}, text_prompt={det_prompt}")
1051
+ image_pil, image = self.grounding.load_image(image_path)
1052
+ boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, det_prompt)
1053
+ updated_image_path = self.sam.segment_image_with_boxes(image_pil, image_path, boxes_filt, pred_phrases)
1054
+ print(
1055
+ f"\nProcessed ObejectSegmenting, Input Image: {image_path}, Object to be Segment {det_prompt}, "
1056
+ f"Output Image: {updated_image_path}")
1057
+ return updated_image_path
1058
+
1059
+
1060
+ class ImageEditing:
1061
+ template_model = True
1062
+
1063
+ def __init__(self, Text2Box: Text2Box, Segmenting: Segmenting, Inpainting: Inpainting):
1064
+ print(f"Initializing ImageEditing")
1065
+ self.sam = Segmenting
1066
+ self.grounding = Text2Box
1067
+ self.inpaint = Inpainting
1068
+
1069
+ def pad_edge(self, mask, padding):
1070
+ # mask Tensor [H,W]
1071
+ mask = mask.numpy()
1072
+ true_indices = np.argwhere(mask)
1073
+ mask_array = np.zeros_like(mask, dtype=bool)
1074
+ for idx in true_indices:
1075
+ padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
1076
+ mask_array[padded_slice] = True
1077
+ new_mask = (mask_array * 255).astype(np.uint8)
1078
+ # new_mask
1079
+ return new_mask
1080
+
1081
+ @prompts(name="Remove Something From The Photo",
1082
+ description="useful when you want to remove and object or something from the photo "
1083
+ "from its description or location. "
1084
+ "The input to this tool should be a comma separated string of two, "
1085
+ "representing the image_path and the object need to be removed. ")
1086
+ def inference_remove(self, inputs):
1087
+ image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
1088
+ return self.inference_replace_sam(f"{image_path},{to_be_removed_txt},background")
1089
+
1090
+ @prompts(name="Replace Something From The Photo",
1091
+ description="useful when you want to replace an object from the object description or "
1092
+ "location with another object from its description. "
1093
+ "The input to this tool should be a comma separated string of three, "
1094
+ "representing the image_path, the object to be replaced, the object to be replaced with ")
1095
+ def inference_replace_sam(self, inputs):
1096
+ image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
1097
+
1098
+ print(f"image_path={image_path}, to_be_replaced_txt={to_be_replaced_txt}")
1099
+ image_pil, image = self.grounding.load_image(image_path)
1100
+ boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, to_be_replaced_txt)
1101
+ image = cv2.imread(image_path)
1102
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
1103
+ self.sam.sam_predictor.set_image(image)
1104
+ masks = self.sam.get_mask_with_boxes(image_pil, image, boxes_filt)
1105
+ mask = torch.sum(masks, dim=0).unsqueeze(0)
1106
+ mask = torch.where(mask > 0, True, False)
1107
+ mask = mask.squeeze(0).squeeze(0).cpu() # tensor
1108
+
1109
+ mask = self.pad_edge(mask, padding=20) # numpy
1110
+ mask_image = Image.fromarray(mask)
1111
+
1112
+ updated_image = self.inpaint(prompt=replace_with_txt, image=image_pil,
1113
+ mask_image=mask_image)
1114
+ updated_image_path = get_new_image_name(image_path, func_name="replace-something")
1115
+ updated_image = updated_image.resize(image_pil.size)
1116
+ updated_image.save(updated_image_path)
1117
+ print(
1118
+ f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
1119
+ f"Output Image: {updated_image_path}")
1120
+ return updated_image_path