File size: 1,999 Bytes
00a16d9
 
 
 
 
 
 
f8b127b
00a16d9
 
f8b127b
00a16d9
 
 
 
 
 
 
 
 
 
 
f8b127b
 
 
00a16d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8b127b
 
 
00a16d9
 
 
 
f8b127b
 
00a16d9
 
 
 
 
 
 
 
b40b011
c454910
 
00a16d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import json
import math

import pandas as pd

from src.assets.symbols import UP_ARROW, DOWN_ARROW

from src.tasks import TASKS


def load_from_hub(fs, repo_path, is_private=False):
    files = fs.glob(f"{repo_path}/**/*.json")

    set_organization_models = {}
    tasks = {}

    for file in files:
        organization, model, task = file.split("/")[-3:]

        organization_model = f"{organization}/{model}"
        task_code = task.replace(".json", "")

        if task_code not in map(lambda task: task.code, TASKS):
            continue
        if is_private != list(filter(lambda task: task.code == task_code, TASKS))[0].private_test:
            continue

        set_organization_models[organization_model] = 1
        tasks[task_code] = 1

    table = pd.DataFrame(
        index=list(set_organization_models.keys()),
        columns=["Organization", "Model"] + list(tasks.keys()),
        data=None,
    )

    for file in files:
        organization, model, task = file.split("/")[-3:]

        organization_model = f"{organization}/{model}"
        task_code = task.replace(".json", "")

        if task_code not in map(lambda task: task.code, TASKS):
            continue
        if is_private != list(filter(lambda task: task.code == task_code, TASKS))[0].private_test:
            continue

        data = json.loads(fs.open(file, "r").read())

        metric = list(filter(lambda task: task.code == task_code, TASKS))[0].metric
        result = round(data["results"][task_code][metric], 4)

        table.loc[organization_model, task_code] = result
        table.loc[organization_model, "Organization"] = organization
        table.loc[organization_model, "Model"] = model

    table.rename(columns={
        task.code: f"{task.name} {UP_ARROW if task.higher_is_better else DOWN_ARROW}"
        for task in TASKS}, inplace=True)
    
    table = table[~table["Organization"].str.contains("vietgpt")]
    table = table[~table["Organization"].str.contains("vinai")]
    return table