vishred18 commited on
Commit
d72d95f
1 Parent(s): fb3636f

Upload 16 files

Browse files
fastspeech/config.yml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is the hyperparameter configuration file for FastSpeech v3.
2
+ # Please make sure this is adjusted for the LJSpeech dataset. If you want to
3
+ # apply to the other dataset, you might need to carefully change some parameters.
4
+ # This configuration performs 200k iters but a best checkpoint is around 150k iters.
5
+
6
+ ###########################################################
7
+ # FEATURE EXTRACTION SETTING #
8
+ ###########################################################
9
+ hop_size: 256 # Hop size.
10
+ format: "npy"
11
+
12
+
13
+ ###########################################################
14
+ # NETWORK ARCHITECTURE SETTING #
15
+ ###########################################################
16
+ model_type: "fastspeech"
17
+
18
+ fastspeech_params:
19
+ n_speakers: 1
20
+ encoder_hidden_size: 384
21
+ encoder_num_hidden_layers: 4
22
+ encoder_num_attention_heads: 2
23
+ encoder_attention_head_size: 192 # hidden_size // num_attention_heads
24
+ encoder_intermediate_size: 1024
25
+ encoder_intermediate_kernel_size: 3
26
+ encoder_hidden_act: "mish"
27
+ decoder_hidden_size: 384
28
+ decoder_num_hidden_layers: 4
29
+ decoder_num_attention_heads: 2
30
+ decoder_attention_head_size: 192 # hidden_size // num_attention_heads
31
+ decoder_intermediate_size: 1024
32
+ decoder_intermediate_kernel_size: 3
33
+ decoder_hidden_act: "mish"
34
+ num_duration_conv_layers: 2
35
+ duration_predictor_filters: 256
36
+ duration_predictor_kernel_sizes: 3
37
+ num_mels: 80
38
+ hidden_dropout_prob: 0.2
39
+ attention_probs_dropout_prob: 0.1
40
+ duration_predictor_dropout_probs: 0.2
41
+ max_position_embeddings: 2048
42
+ initializer_range: 0.02
43
+ output_attentions: False
44
+ output_hidden_states: False
45
+
46
+ ###########################################################
47
+ # DATA LOADER SETTING #
48
+ ###########################################################
49
+ batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
50
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
51
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
52
+ mel_length_threshold: 32 # remove all targets has mel_length <= 32
53
+ is_shuffle: true # shuffle dataset after each epoch.
54
+ ###########################################################
55
+ # OPTIMIZER & SCHEDULER SETTING #
56
+ ###########################################################
57
+ optimizer_params:
58
+ initial_learning_rate: 0.001
59
+ end_learning_rate: 0.00005
60
+ decay_steps: 150000 # < train_max_steps is recommend.
61
+ warmup_proportion: 0.02
62
+ weight_decay: 0.001
63
+
64
+ gradient_accumulation_steps: 1
65
+ var_train_expr: null # trainable variable expr (eg. 'embeddings|encoder|decoder' )
66
+ # must separate by |. if var_train_expr is null then we
67
+ # training all variable
68
+ ###########################################################
69
+ # INTERVAL SETTING #
70
+ ###########################################################
71
+ train_max_steps: 200000 # Number of training steps.
72
+ save_interval_steps: 5000 # Interval steps to save checkpoint.
73
+ eval_interval_steps: 500 # Interval steps to evaluate the network.
74
+ log_interval_steps: 200 # Interval steps to record the training log.
75
+
76
+ ###########################################################
77
+ # OTHER SETTING #
78
+ ###########################################################
79
+ num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
fastspeech/model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d0352241536eec6bb426dfa8d69b8a5a96bb6ef51fe3a5599b68ec190b83a85
3
+ size 120784120
fastspeech/processor.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"symbol_to_id": {"pad": 0, "-": 1, "!": 2, "'": 3, "(": 4, ")": 5, ",": 6, ".": 7, ":": 8, ";": 9, "?": 10, " ": 11, "A": 12, "B": 13, "C": 14, "D": 15, "E": 16, "F": 17, "G": 18, "H": 19, "I": 20, "J": 21, "K": 22, "L": 23, "M": 24, "N": 25, "O": 26, "P": 27, "Q": 28, "R": 29, "S": 30, "T": 31, "U": 32, "V": 33, "W": 34, "X": 35, "Y": 36, "Z": 37, "a": 38, "b": 39, "c": 40, "d": 41, "e": 42, "f": 43, "g": 44, "h": 45, "i": 46, "j": 47, "k": 48, "l": 49, "m": 50, "n": 51, "o": 52, "p": 53, "q": 54, "r": 55, "s": 56, "t": 57, "u": 58, "v": 59, "w": 60, "x": 61, "y": 62, "z": 63, "@AA": 64, "@AA0": 65, "@AA1": 66, "@AA2": 67, "@AE": 68, "@AE0": 69, "@AE1": 70, "@AE2": 71, "@AH": 72, "@AH0": 73, "@AH1": 74, "@AH2": 75, "@AO": 76, "@AO0": 77, "@AO1": 78, "@AO2": 79, "@AW": 80, "@AW0": 81, "@AW1": 82, "@AW2": 83, "@AY": 84, "@AY0": 85, "@AY1": 86, "@AY2": 87, "@B": 88, "@CH": 89, "@D": 90, "@DH": 91, "@EH": 92, "@EH0": 93, "@EH1": 94, "@EH2": 95, "@ER": 96, "@ER0": 97, "@ER1": 98, "@ER2": 99, "@EY": 100, "@EY0": 101, "@EY1": 102, "@EY2": 103, "@F": 104, "@G": 105, "@HH": 106, "@IH": 107, "@IH0": 108, "@IH1": 109, "@IH2": 110, "@IY": 111, "@IY0": 112, "@IY1": 113, "@IY2": 114, "@JH": 115, "@K": 116, "@L": 117, "@M": 118, "@N": 119, "@NG": 120, "@OW": 121, "@OW0": 122, "@OW1": 123, "@OW2": 124, "@OY": 125, "@OY0": 126, "@OY1": 127, "@OY2": 128, "@P": 129, "@R": 130, "@S": 131, "@SH": 132, "@T": 133, "@TH": 134, "@UH": 135, "@UH0": 136, "@UH1": 137, "@UH2": 138, "@UW": 139, "@UW0": 140, "@UW1": 141, "@UW2": 142, "@V": 143, "@W": 144, "@Y": 145, "@Z": 146, "@ZH": 147, "eos": 148}, "id_to_symbol": {"0": "pad", "1": "-", "2": "!", "3": "'", "4": "(", "5": ")", "6": ",", "7": ".", "8": ":", "9": ";", "10": "?", "11": " ", "12": "A", "13": "B", "14": "C", "15": "D", "16": "E", "17": "F", "18": "G", "19": "H", "20": "I", "21": "J", "22": "K", "23": "L", "24": "M", "25": "N", "26": "O", "27": "P", "28": "Q", "29": "R", "30": "S", "31": "T", "32": "U", "33": "V", "34": "W", "35": "X", "36": "Y", "37": "Z", "38": "a", "39": "b", "40": "c", "41": "d", "42": "e", "43": "f", "44": "g", "45": "h", "46": "i", "47": "j", "48": "k", "49": "l", "50": "m", "51": "n", "52": "o", "53": "p", "54": "q", "55": "r", "56": "s", "57": "t", "58": "u", "59": "v", "60": "w", "61": "x", "62": "y", "63": "z", "64": "@AA", "65": "@AA0", "66": "@AA1", "67": "@AA2", "68": "@AE", "69": "@AE0", "70": "@AE1", "71": "@AE2", "72": "@AH", "73": "@AH0", "74": "@AH1", "75": "@AH2", "76": "@AO", "77": "@AO0", "78": "@AO1", "79": "@AO2", "80": "@AW", "81": "@AW0", "82": "@AW1", "83": "@AW2", "84": "@AY", "85": "@AY0", "86": "@AY1", "87": "@AY2", "88": "@B", "89": "@CH", "90": "@D", "91": "@DH", "92": "@EH", "93": "@EH0", "94": "@EH1", "95": "@EH2", "96": "@ER", "97": "@ER0", "98": "@ER1", "99": "@ER2", "100": "@EY", "101": "@EY0", "102": "@EY1", "103": "@EY2", "104": "@F", "105": "@G", "106": "@HH", "107": "@IH", "108": "@IH0", "109": "@IH1", "110": "@IH2", "111": "@IY", "112": "@IY0", "113": "@IY1", "114": "@IY2", "115": "@JH", "116": "@K", "117": "@L", "118": "@M", "119": "@N", "120": "@NG", "121": "@OW", "122": "@OW0", "123": "@OW1", "124": "@OW2", "125": "@OY", "126": "@OY0", "127": "@OY1", "128": "@OY2", "129": "@P", "130": "@R", "131": "@S", "132": "@SH", "133": "@T", "134": "@TH", "135": "@UH", "136": "@UH0", "137": "@UH1", "138": "@UH2", "139": "@UW", "140": "@UW0", "141": "@UW1", "142": "@UW2", "143": "@V", "144": "@W", "145": "@Y", "146": "@Z", "147": "@ZH", "148": "eos"}, "speakers_map": {"ljspeech": 0}, "processor_name": "LJSpeechProcessor"}
fastspeech2/config.yml ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is the hyperparameter configuration file for FastSpeech2 v1.
2
+ # Please make sure this is adjusted for the LJSpeech dataset. If you want to
3
+ # apply to the other dataset, you might need to carefully change some parameters.
4
+ # This configuration performs 200k iters but a best checkpoint is around 150k iters.
5
+
6
+ ###########################################################
7
+ # FEATURE EXTRACTION SETTING #
8
+ ###########################################################
9
+ hop_size: 256 # Hop size.
10
+ format: "npy"
11
+
12
+
13
+ ###########################################################
14
+ # NETWORK ARCHITECTURE SETTING #
15
+ ###########################################################
16
+ model_type: "fastspeech2"
17
+
18
+ fastspeech2_params:
19
+ n_speakers: 1
20
+ encoder_hidden_size: 384
21
+ encoder_num_hidden_layers: 4
22
+ encoder_num_attention_heads: 2
23
+ encoder_attention_head_size: 192 # hidden_size // num_attention_heads
24
+ encoder_intermediate_size: 1024
25
+ encoder_intermediate_kernel_size: 3
26
+ encoder_hidden_act: "mish"
27
+ decoder_hidden_size: 384
28
+ decoder_num_hidden_layers: 4
29
+ decoder_num_attention_heads: 2
30
+ decoder_attention_head_size: 192 # hidden_size // num_attention_heads
31
+ decoder_intermediate_size: 1024
32
+ decoder_intermediate_kernel_size: 3
33
+ decoder_hidden_act: "mish"
34
+ variant_prediction_num_conv_layers: 2
35
+ variant_predictor_filter: 256
36
+ variant_predictor_kernel_size: 3
37
+ variant_predictor_dropout_rate: 0.5
38
+ num_mels: 80
39
+ hidden_dropout_prob: 0.2
40
+ attention_probs_dropout_prob: 0.1
41
+ max_position_embeddings: 2048
42
+ initializer_range: 0.02
43
+ output_attentions: False
44
+ output_hidden_states: False
45
+
46
+ ###########################################################
47
+ # DATA LOADER SETTING #
48
+ ###########################################################
49
+ batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
50
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
51
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
52
+ mel_length_threshold: 32 # remove all targets has mel_length <= 32
53
+ is_shuffle: true # shuffle dataset after each epoch.
54
+ ###########################################################
55
+ # OPTIMIZER & SCHEDULER SETTING #
56
+ ###########################################################
57
+ optimizer_params:
58
+ initial_learning_rate: 0.001
59
+ end_learning_rate: 0.00005
60
+ decay_steps: 150000 # < train_max_steps is recommend.
61
+ warmup_proportion: 0.02
62
+ weight_decay: 0.001
63
+
64
+ gradient_accumulation_steps: 1
65
+ var_train_expr: null # trainable variable expr (eg. 'embeddings|encoder|decoder' )
66
+ # must separate by |. if var_train_expr is null then we
67
+ # training all variable
68
+ ###########################################################
69
+ # INTERVAL SETTING #
70
+ ###########################################################
71
+ train_max_steps: 200000 # Number of training steps.
72
+ save_interval_steps: 5000 # Interval steps to save checkpoint.
73
+ eval_interval_steps: 500 # Interval steps to evaluate the network.
74
+ log_interval_steps: 200 # Interval steps to record the training log.
75
+ ###########################################################
76
+ # OTHER SETTING #
77
+ ###########################################################
78
+ num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
fastspeech2/model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8be313477c9d672be6d9893dc7a6757dc6c8592425d52f133a90077f0fce20ca
3
+ size 124798368
fastspeech2/processor.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"symbol_to_id": {"pad": 0, "-": 1, "!": 2, "'": 3, "(": 4, ")": 5, ",": 6, ".": 7, ":": 8, ";": 9, "?": 10, " ": 11, "A": 12, "B": 13, "C": 14, "D": 15, "E": 16, "F": 17, "G": 18, "H": 19, "I": 20, "J": 21, "K": 22, "L": 23, "M": 24, "N": 25, "O": 26, "P": 27, "Q": 28, "R": 29, "S": 30, "T": 31, "U": 32, "V": 33, "W": 34, "X": 35, "Y": 36, "Z": 37, "a": 38, "b": 39, "c": 40, "d": 41, "e": 42, "f": 43, "g": 44, "h": 45, "i": 46, "j": 47, "k": 48, "l": 49, "m": 50, "n": 51, "o": 52, "p": 53, "q": 54, "r": 55, "s": 56, "t": 57, "u": 58, "v": 59, "w": 60, "x": 61, "y": 62, "z": 63, "@AA": 64, "@AA0": 65, "@AA1": 66, "@AA2": 67, "@AE": 68, "@AE0": 69, "@AE1": 70, "@AE2": 71, "@AH": 72, "@AH0": 73, "@AH1": 74, "@AH2": 75, "@AO": 76, "@AO0": 77, "@AO1": 78, "@AO2": 79, "@AW": 80, "@AW0": 81, "@AW1": 82, "@AW2": 83, "@AY": 84, "@AY0": 85, "@AY1": 86, "@AY2": 87, "@B": 88, "@CH": 89, "@D": 90, "@DH": 91, "@EH": 92, "@EH0": 93, "@EH1": 94, "@EH2": 95, "@ER": 96, "@ER0": 97, "@ER1": 98, "@ER2": 99, "@EY": 100, "@EY0": 101, "@EY1": 102, "@EY2": 103, "@F": 104, "@G": 105, "@HH": 106, "@IH": 107, "@IH0": 108, "@IH1": 109, "@IH2": 110, "@IY": 111, "@IY0": 112, "@IY1": 113, "@IY2": 114, "@JH": 115, "@K": 116, "@L": 117, "@M": 118, "@N": 119, "@NG": 120, "@OW": 121, "@OW0": 122, "@OW1": 123, "@OW2": 124, "@OY": 125, "@OY0": 126, "@OY1": 127, "@OY2": 128, "@P": 129, "@R": 130, "@S": 131, "@SH": 132, "@T": 133, "@TH": 134, "@UH": 135, "@UH0": 136, "@UH1": 137, "@UH2": 138, "@UW": 139, "@UW0": 140, "@UW1": 141, "@UW2": 142, "@V": 143, "@W": 144, "@Y": 145, "@Z": 146, "@ZH": 147, "eos": 148}, "id_to_symbol": {"0": "pad", "1": "-", "2": "!", "3": "'", "4": "(", "5": ")", "6": ",", "7": ".", "8": ":", "9": ";", "10": "?", "11": " ", "12": "A", "13": "B", "14": "C", "15": "D", "16": "E", "17": "F", "18": "G", "19": "H", "20": "I", "21": "J", "22": "K", "23": "L", "24": "M", "25": "N", "26": "O", "27": "P", "28": "Q", "29": "R", "30": "S", "31": "T", "32": "U", "33": "V", "34": "W", "35": "X", "36": "Y", "37": "Z", "38": "a", "39": "b", "40": "c", "41": "d", "42": "e", "43": "f", "44": "g", "45": "h", "46": "i", "47": "j", "48": "k", "49": "l", "50": "m", "51": "n", "52": "o", "53": "p", "54": "q", "55": "r", "56": "s", "57": "t", "58": "u", "59": "v", "60": "w", "61": "x", "62": "y", "63": "z", "64": "@AA", "65": "@AA0", "66": "@AA1", "67": "@AA2", "68": "@AE", "69": "@AE0", "70": "@AE1", "71": "@AE2", "72": "@AH", "73": "@AH0", "74": "@AH1", "75": "@AH2", "76": "@AO", "77": "@AO0", "78": "@AO1", "79": "@AO2", "80": "@AW", "81": "@AW0", "82": "@AW1", "83": "@AW2", "84": "@AY", "85": "@AY0", "86": "@AY1", "87": "@AY2", "88": "@B", "89": "@CH", "90": "@D", "91": "@DH", "92": "@EH", "93": "@EH0", "94": "@EH1", "95": "@EH2", "96": "@ER", "97": "@ER0", "98": "@ER1", "99": "@ER2", "100": "@EY", "101": "@EY0", "102": "@EY1", "103": "@EY2", "104": "@F", "105": "@G", "106": "@HH", "107": "@IH", "108": "@IH0", "109": "@IH1", "110": "@IH2", "111": "@IY", "112": "@IY0", "113": "@IY1", "114": "@IY2", "115": "@JH", "116": "@K", "117": "@L", "118": "@M", "119": "@N", "120": "@NG", "121": "@OW", "122": "@OW0", "123": "@OW1", "124": "@OW2", "125": "@OY", "126": "@OY0", "127": "@OY1", "128": "@OY2", "129": "@P", "130": "@R", "131": "@S", "132": "@SH", "133": "@T", "134": "@TH", "135": "@UH", "136": "@UH0", "137": "@UH1", "138": "@UH2", "139": "@UW", "140": "@UW0", "141": "@UW1", "142": "@UW2", "143": "@V", "144": "@W", "145": "@Y", "146": "@Z", "147": "@ZH", "148": "eos"}, "speakers_map": {"ljspeech": 0}, "processor_name": "LJSpeechProcessor"}
mb-melgan/config.yml ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # This is the hyperparameter configuration file for Multi-Band MelGAN.
3
+ # Please make sure this is adjusted for the LJSpeech dataset. If you want to
4
+ # apply to the other dataset, you might need to carefully change some parameters.
5
+ # This configuration performs 1000k iters.
6
+
7
+ ###########################################################
8
+ # FEATURE EXTRACTION SETTING #
9
+ ###########################################################
10
+ sampling_rate: 22050
11
+ hop_size: 256 # Hop size.
12
+ format: "npy"
13
+
14
+
15
+ ###########################################################
16
+ # GENERATOR NETWORK ARCHITECTURE SETTING #
17
+ ###########################################################
18
+ model_type: "multiband_melgan_generator"
19
+
20
+ multiband_melgan_generator_params:
21
+ out_channels: 4 # Number of output channels (number of subbands).
22
+ kernel_size: 7 # Kernel size of initial and final conv layers.
23
+ filters: 384 # Initial number of channels for conv layers.
24
+ upsample_scales: [8, 4, 2] # List of Upsampling scales.
25
+ stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
26
+ stacks: 4 # Number of stacks in a single residual stack module.
27
+ is_weight_norm: false # Use weight-norm or not.
28
+
29
+ ###########################################################
30
+ # DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
31
+ ###########################################################
32
+ multiband_melgan_discriminator_params:
33
+ out_channels: 1 # Number of output channels.
34
+ scales: 3 # Number of multi-scales.
35
+ downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling.
36
+ downsample_pooling_params: # Parameters of the above pooling function.
37
+ pool_size: 4
38
+ strides: 2
39
+ kernel_sizes: [5, 3] # List of kernel size.
40
+ filters: 16 # Number of channels of the initial conv layer.
41
+ max_downsample_filters: 512 # Maximum number of channels of downsampling layers.
42
+ downsample_scales: [4, 4, 4] # List of downsampling scales.
43
+ nonlinear_activation: "LeakyReLU" # Nonlinear activation function.
44
+ nonlinear_activation_params: # Parameters of nonlinear activation function.
45
+ alpha: 0.2
46
+ is_weight_norm: false # Use weight-norm or not.
47
+
48
+ ###########################################################
49
+ # STFT LOSS SETTING #
50
+ ###########################################################
51
+ stft_loss_params:
52
+ fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss.
53
+ frame_steps: [120, 240, 50] # List of hop size for STFT-based loss
54
+ frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
55
+
56
+ subband_stft_loss_params:
57
+ fft_lengths: [384, 683, 171] # List of FFT size for STFT-based loss.
58
+ frame_steps: [30, 60, 10] # List of hop size for STFT-based loss
59
+ frame_lengths: [150, 300, 60] # List of window length for STFT-based loss.
60
+
61
+ ###########################################################
62
+ # ADVERSARIAL LOSS SETTING #
63
+ ###########################################################
64
+ lambda_feat_match: 10.0 # Loss balancing coefficient for feature matching loss
65
+ lambda_adv: 2.5 # Loss balancing coefficient for adversarial loss.
66
+
67
+ ###########################################################
68
+ # DATA LOADER SETTING #
69
+ ###########################################################
70
+ batch_size: 64 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
71
+ batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size.
72
+ batch_max_steps_valid: 8192 # Length of each audio for validation. Make sure dividable by hope_size.
73
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
74
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
75
+ is_shuffle: true # shuffle dataset after each epoch.
76
+
77
+ ###########################################################
78
+ # OPTIMIZER & SCHEDULER SETTING #
79
+ ###########################################################
80
+ generator_optimizer_params:
81
+ lr_fn: "PiecewiseConstantDecay"
82
+ lr_params:
83
+ boundaries: [100000, 200000, 300000, 400000, 500000, 600000, 700000]
84
+ values: [0.0005, 0.0005, 0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001]
85
+ amsgrad: false
86
+
87
+ discriminator_optimizer_params:
88
+ lr_fn: "PiecewiseConstantDecay"
89
+ lr_params:
90
+ boundaries: [100000, 200000, 300000, 400000, 500000]
91
+ values: [0.00025, 0.000125, 0.0000625, 0.00003125, 0.000015625, 0.000001]
92
+ amsgrad: false
93
+
94
+ gradient_accumulation_steps: 1
95
+ ###########################################################
96
+ # INTERVAL SETTING #
97
+ ###########################################################
98
+ discriminator_train_start_steps: 200000 # steps begin training discriminator
99
+ train_max_steps: 4000000 # Number of training steps.
100
+ save_interval_steps: 20000 # Interval steps to save checkpoint.
101
+ eval_interval_steps: 5000 # Interval steps to evaluate the network.
102
+ log_interval_steps: 200 # Interval steps to record the training log.
103
+
104
+ ###########################################################
105
+ # OTHER SETTING #
106
+ ###########################################################
107
+ num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
mb-melgan/model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b53fe8116ec61fb7a630377f120ef8ff8fa1e8b1ca5f9756259fe3e1e304ef68
3
+ size 10234448
melgan-stft/melgan.stft-2M.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7e40f5c67694fe02a7c96d293203855a9e261442bf721f46089e384b80b45b5
3
+ size 17142440
melgan-stft/melgan.stft_config.yml ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ allow_cache: true
2
+ batch_max_steps: 8192
3
+ batch_max_steps_valid: 81920
4
+ batch_size: 16
5
+ config: egs/ljspeech/conf/multi_stft_melgan.yaml
6
+ dev_dir: ./egs/ljspeech/dump/valid
7
+ discriminator_mixed_precision: false
8
+ discriminator_optimizer_params:
9
+ beta_1: 0.5
10
+ beta_2: 0.9
11
+ decay_steps: 4000000
12
+ end_learning_rate: 0.0001
13
+ initial_learning_rate: 0.0001
14
+ warmup_steps: 0
15
+ weight_decay: 0.0
16
+ discriminator_params:
17
+ downsample_pooling: AveragePooling1D
18
+ downsample_pooling_params:
19
+ pool_size: 4
20
+ strides: 2
21
+ downsample_scales:
22
+ - 4
23
+ - 4
24
+ - 4
25
+ - 4
26
+ filters: 16
27
+ is_weight_norm: false
28
+ kernel_sizes:
29
+ - 5
30
+ - 3
31
+ max_downsample_filters: 1024
32
+ nonlinear_activation: LeakyReLU
33
+ nonlinear_activation_params:
34
+ alpha: 0.2
35
+ out_channels: 1
36
+ scales: 3
37
+ discriminator_train_start_steps: 100000
38
+ eval_interval_steps: 5000
39
+ format: npy
40
+ generator_mixed_precision: false
41
+ generator_optimizer_params:
42
+ beta_1: 0.5
43
+ beta_2: 0.9
44
+ decay_steps: 100000
45
+ end_learning_rate: 0.0001
46
+ initial_learning_rate: 0.001
47
+ warmup_steps: 0
48
+ weight_decay: 0.0
49
+ generator_params:
50
+ filters: 512
51
+ is_weight_norm: false
52
+ kernel_size: 7
53
+ out_channels: 1
54
+ stack_kernel_size: 3
55
+ stacks: 3
56
+ upsample_scales:
57
+ - 8
58
+ - 8
59
+ - 2
60
+ - 2
61
+ hop_size: 256
62
+ is_shuffle: true
63
+ lambda_adv: 4.0
64
+ lambda_feat_match: 10.0
65
+ log_interval_steps: 200
66
+ num_save_intermediate_results: 1
67
+ outdir: ./egs/ljspeech/exp/melgan.stft.v2/
68
+ remove_short_samples: true
69
+ resume: egs/ljspeech/exp/melgan.stft.v2/checkpoints/ckpt-100000
70
+ sampling_rate: 22050
71
+ save_interval_steps: 20000
72
+ stft_loss_params:
73
+ fft_lengths:
74
+ - 1024
75
+ - 2048
76
+ - 512
77
+ frame_lengths:
78
+ - 600
79
+ - 1200
80
+ - 240
81
+ frame_steps:
82
+ - 120
83
+ - 240
84
+ - 50
85
+ train_dir: ./egs/ljspeech/dump/train/
86
+ train_max_steps: 4000000
87
+ use_norm: true
88
+ verbose: 1
89
+ version: 0.3.4
melgan-stft/melgan_stft.v1.yaml ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # This is the hyperparameter configuration file for MelGAN with Multi Resolution STFT.
3
+ # Please make sure this is adjusted for the LJSpeech dataset. If you want to
4
+ # apply to the other dataset, you might need to carefully change some parameters.
5
+ # This configuration performs 4000k iters.
6
+
7
+ ###########################################################
8
+ # FEATURE EXTRACTION SETTING #
9
+ ###########################################################
10
+ sampling_rate: 22050
11
+ hop_size: 256 # Hop size.
12
+ format: "npy"
13
+
14
+
15
+ ###########################################################
16
+ # GENERATOR NETWORK ARCHITECTURE SETTING #
17
+ ###########################################################
18
+ model_type: "melgan_generator"
19
+
20
+ melgan_generator_params:
21
+ out_channels: 1 # Number of output channels.
22
+ kernel_size: 7 # Kernel size of initial and final conv layers.
23
+ filters: 512 # Initial number of channels for conv layers.
24
+ upsample_scales: [8, 8, 2, 2] # List of Upsampling scales.
25
+ stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
26
+ stacks: 3 # Number of stacks in a single residual stack module.
27
+ is_weight_norm: false
28
+
29
+ ###########################################################
30
+ # DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
31
+ ###########################################################
32
+ melgan_discriminator_params:
33
+ out_channels: 1 # Number of output channels.
34
+ scales: 3 # Number of multi-scales.
35
+ downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling.
36
+ downsample_pooling_params: # Parameters of the above pooling function.
37
+ pool_size: 4
38
+ strides: 2
39
+ kernel_sizes: [5, 3] # List of kernel size.
40
+ filters: 16 # Number of channels of the initial conv layer.
41
+ max_downsample_filters: 1024 # Maximum number of channels of downsampling layers.
42
+ downsample_scales: [4, 4, 4, 4] # List of downsampling scales.
43
+ nonlinear_activation: "LeakyReLU" # Nonlinear activation function.
44
+ nonlinear_activation_params: # Parameters of nonlinear activation function.
45
+ alpha: 0.2
46
+ is_weight_norm: false
47
+
48
+ ###########################################################
49
+ # STFT LOSS SETTING #
50
+ ###########################################################
51
+ stft_loss_params:
52
+ fft_lengths: [1024, 2048, 512] # List of FFT size for STFT-based loss.
53
+ frame_steps: [120, 240, 50] # List of hop size for STFT-based loss
54
+ frame_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
55
+
56
+
57
+ ###########################################################
58
+ # ADVERSARIAL LOSS SETTING #
59
+ ###########################################################
60
+ lambda_feat_match: 10.0
61
+ lambda_adv: 4.0
62
+
63
+ ###########################################################
64
+ # DATA LOADER SETTING #
65
+ ###########################################################
66
+ batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
67
+ batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size.
68
+ batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size.
69
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
70
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
71
+ is_shuffle: true # shuffle dataset after each epoch.
72
+
73
+ ###########################################################
74
+ # OPTIMIZER & SCHEDULER SETTING #
75
+ ###########################################################
76
+ generator_optimizer_params:
77
+ lr_fn: "PiecewiseConstantDecay"
78
+ lr_params:
79
+ boundaries: [100000] # = discriminator_train_start_steps.
80
+ values: [0.0005, 0.0001] # learning rate each interval.
81
+
82
+
83
+ discriminator_optimizer_params:
84
+ lr_fn: "PiecewiseConstantDecay"
85
+ lr_params:
86
+ boundaries: [0] # after resume and start training discriminator, global steps is 100k, but local discriminator step is 0
87
+ values: [0.0001, 0.0001] # learning rate each interval.
88
+
89
+ gradient_accumulation_steps: 1
90
+ ###########################################################
91
+ # INTERVAL SETTING #
92
+ ###########################################################
93
+ discriminator_train_start_steps: 100000 # steps begin training discriminator
94
+ train_max_steps: 4000000 # Number of training steps.
95
+ save_interval_steps: 20000 # Interval steps to save checkpoint.
96
+ eval_interval_steps: 5000 # Interval steps to evaluate the network.
97
+ log_interval_steps: 200 # Interval steps to record the training log.
98
+
99
+ ###########################################################
100
+ # OTHER SETTING #
101
+ ###########################################################
102
+ num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
melgan/config.yml ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # This is the hyperparameter configuration file for MelGAN.
3
+ # Please make sure this is adjusted for the LJSpeech dataset. If you want to
4
+ # apply to the other dataset, you might need to carefully change some parameters.
5
+ # This configuration performs 4000k iters.
6
+
7
+ ###########################################################
8
+ # FEATURE EXTRACTION SETTING #
9
+ ###########################################################
10
+ sampling_rate: 22050 # Sampling rate of dataset.
11
+ hop_size: 256 # Hop size.
12
+ format: "npy"
13
+
14
+
15
+ ###########################################################
16
+ # GENERATOR NETWORK ARCHITECTURE SETTING #
17
+ ###########################################################
18
+ model_type: "melgan_generator"
19
+
20
+ melgan_generator_params:
21
+ out_channels: 1 # Number of output channels.
22
+ kernel_size: 7 # Kernel size of initial and final conv layers.
23
+ filters: 512 # Initial number of channels for conv layers.
24
+ upsample_scales: [8, 8, 2, 2] # List of Upsampling scales.
25
+ stack_kernel_size: 3 # Kernel size of dilated conv layers in residual stack.
26
+ stacks: 3 # Number of stacks in a single residual stack module.
27
+ is_weight_norm: false # Use weight-norm or not.
28
+
29
+ ###########################################################
30
+ # DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
31
+ ###########################################################
32
+ melgan_discriminator_params:
33
+ out_channels: 1 # Number of output channels.
34
+ scales: 3 # Number of multi-scales.
35
+ downsample_pooling: "AveragePooling1D" # Pooling type for the input downsampling.
36
+ downsample_pooling_params: # Parameters of the above pooling function.
37
+ pool_size: 4
38
+ strides: 2
39
+ kernel_sizes: [5, 3] # List of kernel size.
40
+ filters: 16 # Number of channels of the initial conv layer.
41
+ max_downsample_filters: 1024 # Maximum number of channels of downsampling layers.
42
+ downsample_scales: [4, 4, 4, 4] # List of downsampling scales.
43
+ nonlinear_activation: "LeakyReLU" # Nonlinear activation function.
44
+ nonlinear_activation_params: # Parameters of nonlinear activation function.
45
+ alpha: 0.2
46
+ is_weight_norm: false # Use weight-norm or not.
47
+
48
+ ###########################################################
49
+ # ADVERSARIAL LOSS SETTING #
50
+ ###########################################################
51
+ lambda_feat_match: 10.0
52
+
53
+ ###########################################################
54
+ # DATA LOADER SETTING #
55
+ ###########################################################
56
+ batch_size: 16 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
57
+ batch_max_steps: 8192 # Length of each audio in batch for training. Make sure dividable by hop_size.
58
+ batch_max_steps_valid: 81920 # Length of each audio for validation. Make sure dividable by hope_size.
59
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
60
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
61
+ is_shuffle: true # shuffle dataset after each epoch.
62
+
63
+ ###########################################################
64
+ # OPTIMIZER & SCHEDULER SETTING #
65
+ ###########################################################
66
+ generator_optimizer_params:
67
+ lr: 0.0001 # Generator's learning rate.
68
+ beta_1: 0.5
69
+ beta_2: 0.9
70
+
71
+ discriminator_optimizer_params:
72
+ lr: 0.0001 # Discriminator's learning rate.
73
+ beta_1: 0.5
74
+ beta_2: 0.9
75
+
76
+ gradient_accumulation_steps: 1
77
+ ###########################################################
78
+ # INTERVAL SETTING #
79
+ ###########################################################
80
+ train_max_steps: 4000000 # Number of training steps.
81
+ save_interval_steps: 3 # Interval steps to save checkpoint.
82
+ eval_interval_steps: 2 # Interval steps to evaluate the network.
83
+ log_interval_steps: 1 # Interval steps to record the training log.
84
+ discriminator_train_start_steps: 0 # step to start training discriminator.
85
+
86
+ ###########################################################
87
+ # OTHER SETTING #
88
+ ###########################################################
89
+ num_save_intermediate_results: 1 # Number of batch to be saved as intermediate results.
melgan/model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33204255555aa9992443585cfdff3befe88d2f60b94224f0493acdf43ee84f19
3
+ size 17142440
tacatron2/config.yml ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This is the hyperparameter configuration file for Tacotron2 v1.
2
+ # Please make sure this is adjusted for the LJSpeech dataset. If you want to
3
+ # apply to the other dataset, you might need to carefully change some parameters.
4
+ # This configuration performs 200k iters but 65k iters is enough to get a good models.
5
+
6
+ ###########################################################
7
+ # FEATURE EXTRACTION SETTING #
8
+ ###########################################################
9
+ hop_size: 256 # Hop size.
10
+ format: "npy"
11
+
12
+
13
+ ###########################################################
14
+ # NETWORK ARCHITECTURE SETTING #
15
+ ###########################################################
16
+ model_type: "tacotron2"
17
+
18
+ tacotron2_params:
19
+ dataset: ljspeech
20
+ embedding_hidden_size: 512
21
+ initializer_range: 0.02
22
+ embedding_dropout_prob: 0.1
23
+ n_speakers: 1
24
+ n_conv_encoder: 5
25
+ encoder_conv_filters: 512
26
+ encoder_conv_kernel_sizes: 5
27
+ encoder_conv_activation: 'relu'
28
+ encoder_conv_dropout_rate: 0.5
29
+ encoder_lstm_units: 256
30
+ n_prenet_layers: 2
31
+ prenet_units: 256
32
+ prenet_activation: 'relu'
33
+ prenet_dropout_rate: 0.5
34
+ n_lstm_decoder: 1
35
+ reduction_factor: 1
36
+ decoder_lstm_units: 1024
37
+ attention_dim: 128
38
+ attention_filters: 32
39
+ attention_kernel: 31
40
+ n_mels: 80
41
+ n_conv_postnet: 5
42
+ postnet_conv_filters: 512
43
+ postnet_conv_kernel_sizes: 5
44
+ postnet_dropout_rate: 0.1
45
+ attention_type: "lsa"
46
+
47
+ ###########################################################
48
+ # DATA LOADER SETTING #
49
+ ###########################################################
50
+ batch_size: 32 # Batch size for each GPU with assuming that gradient_accumulation_steps == 1.
51
+ remove_short_samples: true # Whether to remove samples the length of which are less than batch_max_steps.
52
+ allow_cache: true # Whether to allow cache in dataset. If true, it requires cpu memory.
53
+ mel_length_threshold: 32 # remove all targets has mel_length <= 32
54
+ is_shuffle: true # shuffle dataset after each epoch.
55
+ use_fixed_shapes: true # use_fixed_shapes for training (2x speed-up)
56
+ # refer (https://github.com/dathudeptrai/TensorflowTTS/issues/34#issuecomment-642309118)
57
+
58
+ ###########################################################
59
+ # OPTIMIZER & SCHEDULER SETTING #
60
+ ###########################################################
61
+ optimizer_params:
62
+ initial_learning_rate: 0.001
63
+ end_learning_rate: 0.00001
64
+ decay_steps: 150000 # < train_max_steps is recommend.
65
+ warmup_proportion: 0.02
66
+ weight_decay: 0.001
67
+
68
+ gradient_accumulation_steps: 1
69
+ var_train_expr: null # trainable variable expr (eg. 'embeddings|decoder_cell' )
70
+ # must separate by |. if var_train_expr is null then we
71
+ # training all variables.
72
+ ###########################################################
73
+ # INTERVAL SETTING #
74
+ ###########################################################
75
+ train_max_steps: 200000 # Number of training steps.
76
+ save_interval_steps: 2000 # Interval steps to save checkpoint.
77
+ eval_interval_steps: 500 # Interval steps to evaluate the network.
78
+ log_interval_steps: 200 # Interval steps to record the training log.
79
+ start_schedule_teacher_forcing: 200001 # don't need to apply schedule teacher forcing.
80
+ start_ratio_value: 0.5 # start ratio of scheduled teacher forcing.
81
+ schedule_decay_steps: 50000 # decay step scheduled teacher forcing.
82
+ end_ratio_value: 0.0 # end ratio of scheduled teacher forcing.
83
+ ###########################################################
84
+ # OTHER SETTING #
85
+ ###########################################################
86
+ num_save_intermediate_results: 1 # Number of results to be saved as intermediate results.
tacatron2/model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f1a59e2e0fb31325b9103762f8709fa8f1f90f3fb8fc095d4dabb7e6722d406
3
+ size 127975304
tacatron2/processor.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"symbol_to_id": {"pad": 0, "-": 1, "!": 2, "'": 3, "(": 4, ")": 5, ",": 6, ".": 7, ":": 8, ";": 9, "?": 10, " ": 11, "A": 12, "B": 13, "C": 14, "D": 15, "E": 16, "F": 17, "G": 18, "H": 19, "I": 20, "J": 21, "K": 22, "L": 23, "M": 24, "N": 25, "O": 26, "P": 27, "Q": 28, "R": 29, "S": 30, "T": 31, "U": 32, "V": 33, "W": 34, "X": 35, "Y": 36, "Z": 37, "a": 38, "b": 39, "c": 40, "d": 41, "e": 42, "f": 43, "g": 44, "h": 45, "i": 46, "j": 47, "k": 48, "l": 49, "m": 50, "n": 51, "o": 52, "p": 53, "q": 54, "r": 55, "s": 56, "t": 57, "u": 58, "v": 59, "w": 60, "x": 61, "y": 62, "z": 63, "@AA": 64, "@AA0": 65, "@AA1": 66, "@AA2": 67, "@AE": 68, "@AE0": 69, "@AE1": 70, "@AE2": 71, "@AH": 72, "@AH0": 73, "@AH1": 74, "@AH2": 75, "@AO": 76, "@AO0": 77, "@AO1": 78, "@AO2": 79, "@AW": 80, "@AW0": 81, "@AW1": 82, "@AW2": 83, "@AY": 84, "@AY0": 85, "@AY1": 86, "@AY2": 87, "@B": 88, "@CH": 89, "@D": 90, "@DH": 91, "@EH": 92, "@EH0": 93, "@EH1": 94, "@EH2": 95, "@ER": 96, "@ER0": 97, "@ER1": 98, "@ER2": 99, "@EY": 100, "@EY0": 101, "@EY1": 102, "@EY2": 103, "@F": 104, "@G": 105, "@HH": 106, "@IH": 107, "@IH0": 108, "@IH1": 109, "@IH2": 110, "@IY": 111, "@IY0": 112, "@IY1": 113, "@IY2": 114, "@JH": 115, "@K": 116, "@L": 117, "@M": 118, "@N": 119, "@NG": 120, "@OW": 121, "@OW0": 122, "@OW1": 123, "@OW2": 124, "@OY": 125, "@OY0": 126, "@OY1": 127, "@OY2": 128, "@P": 129, "@R": 130, "@S": 131, "@SH": 132, "@T": 133, "@TH": 134, "@UH": 135, "@UH0": 136, "@UH1": 137, "@UH2": 138, "@UW": 139, "@UW0": 140, "@UW1": 141, "@UW2": 142, "@V": 143, "@W": 144, "@Y": 145, "@Z": 146, "@ZH": 147, "eos": 148}, "id_to_symbol": {"0": "pad", "1": "-", "2": "!", "3": "'", "4": "(", "5": ")", "6": ",", "7": ".", "8": ":", "9": ";", "10": "?", "11": " ", "12": "A", "13": "B", "14": "C", "15": "D", "16": "E", "17": "F", "18": "G", "19": "H", "20": "I", "21": "J", "22": "K", "23": "L", "24": "M", "25": "N", "26": "O", "27": "P", "28": "Q", "29": "R", "30": "S", "31": "T", "32": "U", "33": "V", "34": "W", "35": "X", "36": "Y", "37": "Z", "38": "a", "39": "b", "40": "c", "41": "d", "42": "e", "43": "f", "44": "g", "45": "h", "46": "i", "47": "j", "48": "k", "49": "l", "50": "m", "51": "n", "52": "o", "53": "p", "54": "q", "55": "r", "56": "s", "57": "t", "58": "u", "59": "v", "60": "w", "61": "x", "62": "y", "63": "z", "64": "@AA", "65": "@AA0", "66": "@AA1", "67": "@AA2", "68": "@AE", "69": "@AE0", "70": "@AE1", "71": "@AE2", "72": "@AH", "73": "@AH0", "74": "@AH1", "75": "@AH2", "76": "@AO", "77": "@AO0", "78": "@AO1", "79": "@AO2", "80": "@AW", "81": "@AW0", "82": "@AW1", "83": "@AW2", "84": "@AY", "85": "@AY0", "86": "@AY1", "87": "@AY2", "88": "@B", "89": "@CH", "90": "@D", "91": "@DH", "92": "@EH", "93": "@EH0", "94": "@EH1", "95": "@EH2", "96": "@ER", "97": "@ER0", "98": "@ER1", "99": "@ER2", "100": "@EY", "101": "@EY0", "102": "@EY1", "103": "@EY2", "104": "@F", "105": "@G", "106": "@HH", "107": "@IH", "108": "@IH0", "109": "@IH1", "110": "@IH2", "111": "@IY", "112": "@IY0", "113": "@IY1", "114": "@IY2", "115": "@JH", "116": "@K", "117": "@L", "118": "@M", "119": "@N", "120": "@NG", "121": "@OW", "122": "@OW0", "123": "@OW1", "124": "@OW2", "125": "@OY", "126": "@OY0", "127": "@OY1", "128": "@OY2", "129": "@P", "130": "@R", "131": "@S", "132": "@SH", "133": "@T", "134": "@TH", "135": "@UH", "136": "@UH0", "137": "@UH1", "138": "@UH2", "139": "@UW", "140": "@UW0", "141": "@UW1", "142": "@UW2", "143": "@V", "144": "@W", "145": "@Y", "146": "@Z", "147": "@ZH", "148": "eos"}, "speakers_map": {"ljspeech": 0}, "processor_name": "LJSpeechProcessor"}