import os
import time
import spaces
import torch
import gradio as gr
from threading import Thread
from huggingface_hub import snapshot_download
from pathlib import Path
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TITLE = "
Mistral-lab
"
PLACEHOLDER = """
Chat with Mistral AI LLM.
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# download model
mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
# tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
model = Transformer.from_folder(
mistral_models_path,
device=device,
dtype=torch.bfloat16)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 1024,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.append(UserMessage(content=prompt))
conversation.append(AssistantMessage(content=answer))
conversation.append(UserMessage(content=message))
completion_request = ChatCompletionRequest(messages=conversation)
tokens = tokenizer.encode_chat_completion(completion_request).tokens
out_tokens, _ = generate(
[tokens],
model,
max_tokens=max_new_tokens,
temperature=temperature,
eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
for i in range(len(result)):
time.sleep(0.05)
yield result[: i + 1]
chatbot = gr.Chatbot(
height=600,
placeholder=PLACEHOLDER,
examples=[
{"text": "Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."},
{"text": "What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."},
{"text": "Tell me a random fun fact about the Roman Empire."},
{"text": "Show me a code snippet of a website's sticky header in CSS and JavaScript."},
],
)
with gr.Blocks(theme="ocean", css=CSS) as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
)
if __name__ == "__main__":
demo.launch()