Spaces:
Sleeping
Sleeping
File size: 5,613 Bytes
cc5b602 6f619d7 d381360 6386510 51a7d9e 057b685 6386510 970d940 057b685 970d940 057b685 970d940 51a7d9e e6367a7 6386510 bd34f0b 423ddc8 bd34f0b 51a7d9e 970d940 67988c0 bad8c99 67988c0 970d940 423ddc8 970d940 423ddc8 970d940 423ddc8 057b685 970d940 057b685 d381360 4ed884e 057b685 1d4c579 057b685 4ed884e e59867b b3599a0 f6667bb b3599a0 f6667bb 423ddc8 3a65db9 057b685 a2d1610 057b685 3a65db9 057b685 423ddc8 e59867b 423ddc8 057b685 423ddc8 83bee2b 970d940 83bee2b 3a65db9 057b685 a2d1610 1c1ffc4 057b685 a2d1610 3a65db9 67988c0 3a65db9 83bee2b df4462a 83bee2b df4462a 83bee2b 7ae226e 83bee2b 7ae226e 1c1ffc4 5c72391 83bee2b 057b685 df4462a 83bee2b 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import os
import time
import spaces
import torch
import gradio as gr
import json
from huggingface_hub import snapshot_download
from pathlib import Path
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import AssistantMessage, UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
from mistral_common.tokens.tokenizers.tekken import SpecialTokenPolicy
HF_TOKEN = os.environ.get("HF_TOKEN", None)
PLACEHOLDER = """
<center>
<p>Chat with Mistral AI LLM.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
.examples {
display: None;
}
"""
# download model
mistral_models_path = Path.home().joinpath('mistral_models', '8B-Instruct')
mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Ministral-8B-Instruct-2410", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
# tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tekken.json")
tekken = tokenizer.instruct_tokenizer.tokenizer
tekken.special_token_policy = SpecialTokenPolicy.IGNORE
model = Transformer.from_folder(
mistral_models_path,
device=device,
dtype=torch.bfloat16)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
tools: str,
temperature: float = 0.3,
max_tokens: int = 1024,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.append(UserMessage(content=prompt))
conversation.append(AssistantMessage(content=answer))
# for item in history:
# if item[role] == "user":
# conversation.append(UserMessage(content=item[content]))
# elif item[role] == "assistant":
# conversation.append(AssistantMessage(content=item[content]))
conversation.append(UserMessage(content=message))
print(f'history: {conversation}')
tools = f'function_params = {{{tools}}}'
local_namespace = {}
exec(tools, globals(), local_namespace)
function_params = local_namespace.get('function_params', {})
completion_request = ChatCompletionRequest(
tools=[
Tool(
function=Function(
**function_params
)
)
] if tools else None,
messages=conversation)
tokens = tokenizer.encode_chat_completion(completion_request).tokens
out_tokens, _ = generate(
[tokens],
model,
max_tokens=max_tokens,
temperature=temperature,
eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0])
for i in range(len(result)):
time.sleep(0.05)
yield result[: i + 1]
tools_schema = """
"name": "get_current_weather",
"description": "Get the current weather",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"format": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The temperature unit to use. Infer this from the users location.",
},
},
"required": ["location", "format"],
},
"""
chatbot = gr.Chatbot(height = 600, placeholder = PLACEHOLDER)
with gr.Blocks(theme="citrus", css=CSS) as demo:
gr.ChatInterface(
fn = stream_chat,
title = "Mistral-lab",
chatbot = chatbot,
# type="messages",
fill_height = True,
examples = [
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples = False,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False),
additional_inputs=[
gr.Textbox(
value = tools_schema,
label = "Tools schema",
lines = 10,
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
if __name__ == "__main__":
demo.launch()
|