File size: 3,989 Bytes
51a7d9e
e6367a7
51a7d9e
 
e6367a7
51a7d9e
e6367a7
edb9e8a
51a7d9e
 
 
82b38de
e6367a7
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
b48b00e
51a7d9e
bd34f0b
 
 
82b38de
bd34f0b
 
 
 
 
51a7d9e
 
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
652ef04
51a7d9e
82b38de
bd34f0b
fd6304d
 
51a7d9e
 
 
 
 
fd6304d
3b9cb87
e6367a7
 
bd34f0b
 
e6367a7
 
 
 
51a7d9e
edb9e8a
e6367a7
 
 
 
51a7d9e
 
 
82b38de
51a7d9e
82b38de
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b38de
51a7d9e
 
e6367a7
51a7d9e
 
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import copy
import gradio as gr
import spaces
from llama_cpp import Llama
import os
from huggingface_hub import hf_hub_download
from threading import Thread


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "google/gemma-2-27b-it"
MODEL_NAME = MODEL_ID.split("/")[-1]
MODEL_FILE = "gemma-2-27b-it-Q4_K_M.gguf"

os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

llm = Llama(
    model_path=hf_hub_download(
        repo_id=os.environ.get(MODEL_ID),
        filename=os.environ.get(MODEL_FILE),
    ),
    n_ctx=4096,
    n_gpu_layers=-1, 
    chat_format="gemma",
) 

TITLE = "<h1><center>Chatbox</center></h1>"

DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>Gemma is the large language model built by Google.
<br>
Feel free to test without log.
</p>
</center>
"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""


@spaces.GPU(duration=90)
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message})

    print(f"Conversation is -\n{conversation}")
    
    output = llm.create_chat_completion(
        messages=conversation,
        top_k=top_k,
        top_p=top_p,
        repeat_penalty=penalty,
        max_tokens=max_new_tokens, 
        stream =True, 
        temperature=temperature,        
    )
    
    for out in output:
        stream = copy.deepcopy(out)
        temp += stream["choices"][0]["text"]
        yield temp



chatbot = gr.Chatbot(height=600)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=2048,
                step=1,
                value=1024,
                label="Max Tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()