File size: 1,749 Bytes
5781b89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import torch
import re
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM

parser = argparse.ArgumentParser()

if torch.cuda.is_available():
    device, dtype = "cuda", torch.float16
else:
    device, dtype = "cpu", torch.float32

model_id = "vikhyatk/moondream2"
tokenizer = AutoTokenizer.from_pretrained(model_id, revision="2024-03-04")
moondream = AutoModelForCausalLM.from_pretrained(
    model_id, trust_remote_code=True, revision="2024-03-04"
).to(device=device, dtype=dtype)
moondream.eval()


def answer_question(img, prompt):
    image_embeds = moondream.encode_image(img)
    streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
    thread = Thread(
        target=moondream.answer_question,
        kwargs={
            "image_embeds": image_embeds,
            "question": prompt,
            "tokenizer": tokenizer,
            "streamer": streamer,
        },
    )
    thread.start()

    buffer = ""
    for new_text in streamer:
        clean_text = re.sub("<$|<END$", "", new_text)
        buffer += clean_text
        yield buffer


with gr.Blocks() as demo:
    gr.Markdown(
        """
        # 🌔 moondream2
        A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
        """
    )
    with gr.Row():
        prompt = gr.Textbox(label="Input", placeholder="Type here...", scale=4)
        submit = gr.Button("Submit")
    with gr.Row():
        img = gr.Image(type="pil", label="Upload an Image")
        output = gr.TextArea(label="Response")
    submit.click(answer_question, [img, prompt], output)
    prompt.submit(answer_question, [img, prompt], output)

demo.queue().launch()