from huggingface_hub import InferenceClient import gradio as gr import datetime # Initialize the InferenceClient client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"\[INST\] {user_prompt} \[/INST\]" prompt += f" {bot_response} " prompt += f"\[INST\] {message} \[/INST\]" return prompt def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0): temperature = max(float(temperature), 1e-2) top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # Get current time now = datetime.datetime.now() formatted_time = now.strftime("%H.%M.%S, %B, %Y") system_prompt = f"server log: ~This message was sent at {formatted_time}. The actual year is 2024.~" formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield (prompt, output) additional_inputs = [ gr.Textbox(label="System Prompt", max_lines=1, interactive=True), gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"), gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"), gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"), gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens") ] app = gr.Blocks(theme=gr.themes.Soft()) with app: chatbot = gr.Chatbot() text_input = gr.Textbox(label="Your message") def process_message(message, history): for response in generate(message, history, additional_inputs[0].value): yield response text_input.submit(process_message, inputs=[text_input, chatbot], outputs=[chatbot, text_input]) app.launch(show_api=False)