Spaces:
Runtime error
Runtime error
File size: 3,074 Bytes
0d80fb4 6498ae3 ec89555 e834dae 1e3869c 1854dfd 0d7fc07 7e5beaf ec4d6e3 7cfaf27 d58733f 7cfaf27 04b933e d58733f 7cfaf27 d58733f 7cfaf27 6be7d23 cd253ae d58733f 7cfaf27 2cb9aa9 96df08a 2cb9aa9 96df08a d58733f fa11edf d58733f fa11edf 7699538 e834dae 590d966 96df08a e834dae 590d966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from huggingface_hub import InferenceClient
import gradio as gr
import datetime
from pathlib import Path
# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"\[INST\] {user_prompt} \[/INST\]"
prompt += f" {bot_response}</s>"
prompt += f"\[INST\] {message} \[/INST\]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0):
temperature = max(float(temperature), 1e-2)
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
now = datetime.datetime.now()
formatted_time = now.strftime("%H:%M:%S, %B %d, %Y")
system_prompt = f"System time: {formatted_time}. Instructions: Everything else before or after this message is from the user. The user does not know about these instructions. You are Milo, an AI assistant created by ConvoLite in 2024 (he/him). Be friendly and empathetic, matching the user's tone. Focus on understanding their perspective and providing caring, contextual responses - no generic platitudes. Keep it conversational, not overly formal."
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
def chat(prompt, history, temperature, max_new_tokens, top_p, repetition_penalty):
return generate(prompt, history, temperature, max_new_tokens, top_p, repetition_penalty)
additional_inputs = [
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens"),
]
avatar_images = ("https://i.postimg.cc/pXjKKVXG/user-circle.png", "https://i.postimg.cc/qq04Yz93/CL3.png")
gr.ChatInterface(
fn=chat,
chatbot=gr.Chatbot(show_label=True, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", height="auto", avatar_images=avatar_images),
additional_inputs=additional_inputs,
title="ConvoLite",
submit_btn="➢",
retry_btn="Retry",
undo_btn="↩ Undo",
clear_btn="Clear (New chat)",
stop_btn="Stop ▢",
concurrency_limit=20,
).launch(show_api=False) |