Milo-LLM-Test / app.py
vericudebuget's picture
Update app.py
5abdb9c verified
from huggingface_hub import InferenceClient
import gradio as gr
import datetime
from pathlib import Path
# Initialize the InferenceClient
client = InferenceClient("Kooten/DaringMaid-20B-V1.1-GGUF")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=9048, top_p=0.95, repetition_penalty=1.0):
temperature = max(float(temperature), 1e-2)
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
now = datetime.datetime.now()
formatted_time = now.strftime("%H:%M:%S, %B %d, %Y")
system_prompt = f"System time: {formatted_time}. System time: {formatted_time}. Instructions: Everything else is from the user. You are Milo, an AI assistant created by ConvoLite in 2024 (he/him). Be friendly and empathetic, matching the user's tone. Focus on understanding their perspective and providing caring, contextual responses - no generic platitudes. Keep it conversational, not overly formal."
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
additional_inputs = [
gr.Textbox(label="System Prompt", max_lines=1, interactive=True),
gr.Slider(label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs"),
gr.Slider(label="Max new tokens", value=9048, minimum=256, maximum=9048, step=64, interactive=True, info="The maximum numbers of new tokens"),
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens"),
gr.Slider(label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens")
]
avatar_images = ("https://i.postimg.cc/pXjKKVXG/user-circle.png", "https://i.postimg.cc/qq04Yz93/CL3.png")
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=True, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", height="auto", avatar_images=avatar_images),
additional_inputs=additional_inputs,
title="ConvoLite",
submit_btn="➢",
retry_btn="Retry",
undo_btn="↩ Undo",
clear_btn="Clear (New chat)",
stop_btn="Stop ▢",
concurrency_limit=20,
).launch(show_api=False)