Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import gradio as gr
|
4 |
+
from tsai_gpt.tokenizer import Tokenizer
|
5 |
+
import lightning as L
|
6 |
+
from lightning.fabric.loggers import CSVLogger
|
7 |
+
from pathlib import Path
|
8 |
+
from tsai_gpt.utils import num_parameters, load_checkpoint, get_default_supported_precision
|
9 |
+
from tsai_gpt.model import GPT, Block, Config
|
10 |
+
|
11 |
+
model_name = "pythia-160m"
|
12 |
+
name = "redpajama"
|
13 |
+
out_dir = Path("out") / name
|
14 |
+
log_interval = 100
|
15 |
+
|
16 |
+
precision = get_default_supported_precision(False)
|
17 |
+
logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval)
|
18 |
+
fabric = L.Fabric(devices=1, strategy="auto", precision=precision, loggers=logger)
|
19 |
+
|
20 |
+
config = Config.from_name(model_name)
|
21 |
+
|
22 |
+
def _init_weights(module: nn.Module) -> None:
|
23 |
+
"""Meant to be used with `gpt.apply(gpt._init_weights)`."""
|
24 |
+
if isinstance(module, nn.Linear):
|
25 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
26 |
+
if module.bias is not None:
|
27 |
+
torch.nn.init.zeros_(module.bias)
|
28 |
+
elif isinstance(module, nn.Embedding):
|
29 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
30 |
+
|
31 |
+
with fabric.init_module(empty_init=True):
|
32 |
+
model = GPT(config)
|
33 |
+
model.apply(_init_weights)
|
34 |
+
model.apply(_init_weights)
|
35 |
+
|
36 |
+
|
37 |
+
checkpoint_path = Path("out/redpajama/iter-015000-ckpt.pth")
|
38 |
+
|
39 |
+
load_checkpoint(fabric, model, checkpoint_path)
|
40 |
+
|
41 |
+
#print(model.transformer.h[0].mlp.fc.weight)
|
42 |
+
|
43 |
+
#fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.")
|
44 |
+
#fabric.print(f"Total parameters {num_parameters(model):,}")
|
45 |
+
|
46 |
+
weight_decay = 1e-1
|
47 |
+
beta1 = 0.9
|
48 |
+
beta2 = 0.95
|
49 |
+
learning_rate = 6e-3
|
50 |
+
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")}
|
51 |
+
|
52 |
+
model = fabric.setup(model)
|
53 |
+
optimizer = torch.optim.AdamW(
|
54 |
+
model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2), foreach=False
|
55 |
+
)
|
56 |
+
|
57 |
+
# model_copy = model
|
58 |
+
|
59 |
+
optimizer = fabric.setup_optimizers(optimizer)
|
60 |
+
|
61 |
+
state = {"model": model, "optimizer": optimizer, "hparams": hparams, "iter_num": 0, "step_count": 0}
|
62 |
+
|
63 |
+
resume = max(out_dir.glob("*.pth"), key=lambda p: int(p.name.split("-")[1]))
|
64 |
+
if resume:
|
65 |
+
fabric.print(f"Loading model from {resume}")
|
66 |
+
fabric.load(resume, state)
|
67 |
+
|
68 |
+
deviceType = 'cuda' if torch.cuda.is_available() else 'cpu'
|
69 |
+
m = model.to(deviceType)
|
70 |
+
tokenizer_gpt = Tokenizer(checkpoint_dir=Path("checkpoints\meta-llama\Llama-2-7b-chat-hf"))
|
71 |
+
|
72 |
+
|
73 |
+
def inference(input_context, count):
|
74 |
+
#print('--------------------input = ',input_context)
|
75 |
+
encoded_text = tokenizer_gpt.encode(input_context)
|
76 |
+
#print('--------------------encoded text = ',encoded_text)
|
77 |
+
count = int(count)
|
78 |
+
#print('--------------------count = ',count)
|
79 |
+
reshaped_tensor = torch.unsqueeze(encoded_text, 0).to(deviceType)
|
80 |
+
#print('--------------------reshaped_tensor = ',reshaped_tensor)
|
81 |
+
out_text = tokenizer_gpt.decode(m.generate(reshaped_tensor, max_new_tokens=count)[0])
|
82 |
+
return out_text
|
83 |
+
|
84 |
+
title = "TSAI S22 Assignment: GPT training on LLaMa dataset"
|
85 |
+
description = "A simple Gradio interface that accepts a context and generates text "
|
86 |
+
examples = [["Machine Learning","200"],
|
87 |
+
["Deep Learning","200"]
|
88 |
+
]
|
89 |
+
|
90 |
+
|
91 |
+
demo = gr.Interface(
|
92 |
+
inference,
|
93 |
+
inputs = [gr.Textbox(placeholder="Enter starting characters"), gr.Textbox(placeholder="Enter number of characters you want to generate")],
|
94 |
+
outputs = [gr.Textbox(label="Generated text")],
|
95 |
+
title = title,
|
96 |
+
description = description,
|
97 |
+
examples = examples
|
98 |
+
)
|
99 |
+
demo.launch()
|