from PIL import Image import sys import re import streamlit as st from streamlit_pills import pills from streamlit_feedback import streamlit_feedback from utils import thumbs_feedback, escape_dollars_outside_latex, send_amplitude_data from vectara_agentic.agent import AgentStatusType from agent import initialize_agent, get_agent_config initial_prompt = "How can I help you today?" def show_example_questions(): if len(st.session_state.example_messages) > 0 and st.session_state.first_turn: selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None) if selected_example: st.session_state.ex_prompt = selected_example st.session_state.first_turn = False return True return False def format_log_msg(log_msg: str): max_log_msg_size = 500 return log_msg if len(log_msg) <= max_log_msg_size else log_msg[:max_log_msg_size]+'...' def agent_progress_callback(status_type: AgentStatusType, msg: str): output = f'{status_type.value}: {msg}' st.session_state.log_messages.append(output) if 'status' in st.session_state: latest_message = '' if status_type == AgentStatusType.TOOL_CALL: match = re.search(r"'([^']*)'", msg) tool_name = match.group(1) if match else "Unknown tool" latest_message = f"Calling tool {tool_name}..." elif status_type == AgentStatusType.TOOL_OUTPUT: latest_message = "Analyzing tool output..." else: return st.session_state.status.update(label=latest_message) with st.session_state.status: for log_msg in st.session_state.log_messages: st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) @st.dialog(title="Agent logs", width='large') def show_modal(): for log_msg in st.session_state.log_messages: st.markdown(format_log_msg(log_msg), unsafe_allow_html=True) async def launch_bot(): def reset(): st.session_state.messages = [{"role": "assistant", "content": initial_prompt, "avatar": "🦖"}] st.session_state.log_messages = [] st.session_state.prompt = None st.session_state.ex_prompt = None st.session_state.first_turn = True st.session_state.show_logs = False if 'agent' not in st.session_state: st.session_state.agent = initialize_agent(cfg, agent_progress_callback=agent_progress_callback) else: st.session_state.agent.clear_memory() if 'cfg' not in st.session_state: cfg = get_agent_config() st.session_state.cfg = cfg st.session_state.ex_prompt = None example_messages = [example.strip() for example in cfg.examples.split(";")] if cfg.examples else [] st.session_state.example_messages = [em for em in example_messages if len(em)>0] reset() cfg = st.session_state.cfg # left side content with st.sidebar: image = Image.open('Vectara-logo.png') st.image(image, width=175) st.markdown(f"## {cfg['demo_welcome']}") st.markdown(f"{cfg['demo_description']}") st.markdown("\n\n") bc1, bc2 = st.columns([1, 1]) with bc1: if st.button('Start Over'): reset() st.rerun() with bc2: if st.button('Show Logs'): show_modal() st.divider() st.markdown( "## How this works?\n" "This app was built with [Vectara](https://vectara.com).\n\n" "It demonstrates the use of Agentic RAG functionality with Vectara" ) if "messages" not in st.session_state.keys(): reset() # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"], avatar=message["avatar"]): st.write(message["content"]) example_container = st.empty() with example_container: if show_example_questions(): example_container.empty() st.session_state.first_turn = False st.rerun() # User-provided prompt if st.session_state.ex_prompt: prompt = st.session_state.ex_prompt else: prompt = st.chat_input() if prompt: st.session_state.messages.append({"role": "user", "content": prompt, "avatar": '🧑‍💻'}) st.session_state.prompt = prompt st.session_state.log_messages = [] st.session_state.show_logs = False with st.chat_message("user", avatar='🧑‍💻'): print(f"Starting new question: {prompt}\n") st.write(prompt) st.session_state.ex_prompt = None # Generate a new response if last message is not from assistant if st.session_state.prompt: with st.chat_message("assistant", avatar='🤖'): st.session_state.status = st.status('Processing...', expanded=False) res = st.session_state.agent.chat(st.session_state.prompt) res = escape_dollars_outside_latex(res) message = {"role": "assistant", "content": res, "avatar": '🤖'} st.session_state.messages.append(message) st.markdown(res) send_amplitude_data( user_query=st.session_state.messages[-2]["content"], bot_response=st.session_state.messages[-1]["content"], demo_name=cfg['demo_name'] ) st.session_state.ex_prompt = None st.session_state.prompt = None st.session_state.first_turn = False st.rerun() # Record user feedback if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != initial_prompt): if "feedback_key" not in st.session_state: st.session_state.feedback_key = 0 streamlit_feedback( feedback_type="thumbs", on_submit=thumbs_feedback, key=str(st.session_state.feedback_key), kwargs={"user_query": st.session_state.messages[-2]["content"], "bot_response": st.session_state.messages[-1]["content"], "demo_name": cfg["demo_name"]} ) sys.stdout.flush()