Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import tempfile
|
5 |
+
from collections import Counter
|
6 |
+
import pandas as pd
|
7 |
+
import pyttsx3
|
8 |
+
|
9 |
+
# import streamlit.components.v1 as components
|
10 |
+
|
11 |
+
# # embed streamlit docs in a streamlit app
|
12 |
+
# components.iframe("https://nafisrayan.github.io/ThreeJS-Hand-Control-Panel/", height=500, width=500)
|
13 |
+
|
14 |
+
p_time = 0
|
15 |
+
|
16 |
+
st.sidebar.title('Settings')
|
17 |
+
model_type = st.sidebar.selectbox(
|
18 |
+
'Choose YOLO Model', ('YOLOv8', 'YOLOv9', 'YOLOv10')
|
19 |
+
)
|
20 |
+
|
21 |
+
st.title(f'{model_type} Predictions')
|
22 |
+
sample_img = cv2.imread('logo2.jpg')
|
23 |
+
FRAME_WINDOW = st.image(sample_img, channels='BGR')
|
24 |
+
cap = None
|
25 |
+
|
26 |
+
|
27 |
+
def speak(audio):
|
28 |
+
engine = pyttsx3.init('sapi5')
|
29 |
+
voices = engine.getProperty('voices')
|
30 |
+
|
31 |
+
engine.setProperty('voice', voices[1].id)
|
32 |
+
engine.say(audio)
|
33 |
+
engine.runAndWait()
|
34 |
+
|
35 |
+
if st.sidebar.checkbox('Load Model Options'):
|
36 |
+
|
37 |
+
# YOLOv8 Model
|
38 |
+
if model_type == 'YOLOv8':
|
39 |
+
path_model_file = 'yolov8.pt'
|
40 |
+
from ultralytics import YOLO
|
41 |
+
model = YOLO(path_model_file)
|
42 |
+
|
43 |
+
if model_type == 'YOLOv9':
|
44 |
+
path_model_file = 'yolov9c.pt'
|
45 |
+
from ultralytics import YOLO
|
46 |
+
model = YOLO(path_model_file)
|
47 |
+
if model_type == 'YOLOv10':
|
48 |
+
st.caption("Work in Progress... >_<")
|
49 |
+
# path_model_file = 'yolov10n.pt'
|
50 |
+
# from ultralytics import YOLO
|
51 |
+
# model = YOLO(path_model_file)
|
52 |
+
|
53 |
+
# Load Class names
|
54 |
+
class_labels = model.names
|
55 |
+
|
56 |
+
# Inference Mode
|
57 |
+
options = st.sidebar.radio(
|
58 |
+
'Options:', ('Webcam', 'Image', 'Video'), index=1) # removed RTSP for now
|
59 |
+
|
60 |
+
# Confidence
|
61 |
+
confidence = st.sidebar.slider(
|
62 |
+
'Detection Confidence', min_value=0.0, max_value=1.0, value=0.25)
|
63 |
+
|
64 |
+
# Draw thickness
|
65 |
+
draw_thick = st.sidebar.slider(
|
66 |
+
'Draw Thickness:', min_value=1,
|
67 |
+
max_value=20, value=3
|
68 |
+
)
|
69 |
+
|
70 |
+
color_pick_list = [None]*len(class_labels)
|
71 |
+
|
72 |
+
|
73 |
+
# Image
|
74 |
+
if options == 'Image':
|
75 |
+
upload_img_file = st.sidebar.file_uploader(
|
76 |
+
'Upload Image', type=['jpg', 'jpeg', 'png'])
|
77 |
+
if upload_img_file is not None:
|
78 |
+
pred = st.checkbox(f'Predict Using {model_type}')
|
79 |
+
file_bytes = np.asarray(
|
80 |
+
bytearray(upload_img_file.read()), dtype=np.uint8)
|
81 |
+
img = cv2.imdecode(file_bytes, 1)
|
82 |
+
FRAME_WINDOW.image(img, channels='BGR')
|
83 |
+
# st.caption(model(img)[0][0])
|
84 |
+
|
85 |
+
if pred:
|
86 |
+
def predict(model, imag, classes=[], conf=confidence):
|
87 |
+
if classes:
|
88 |
+
results = model.predict(imag, classes=classes, conf=confidence)
|
89 |
+
else:
|
90 |
+
results = model.predict(imag, conf=conf)
|
91 |
+
|
92 |
+
return results
|
93 |
+
|
94 |
+
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick):
|
95 |
+
results = predict(model, img, classes, conf=conf)
|
96 |
+
|
97 |
+
# Initialize a Counter to keep track of class occurrences
|
98 |
+
class_counts = Counter()
|
99 |
+
|
100 |
+
for result in results:
|
101 |
+
for box in result.boxes:
|
102 |
+
# Update the counter with the class name
|
103 |
+
class_name = result.names[int(box.cls[0])]
|
104 |
+
class_counts[class_name] += 1
|
105 |
+
|
106 |
+
# Draw the bounding box and label with a random color
|
107 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
108 |
+
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
|
109 |
+
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness)
|
110 |
+
cv2.putText(img, f"{class_name}",
|
111 |
+
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
|
112 |
+
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness)
|
113 |
+
|
114 |
+
# Convert the Counter to a DataFrame for easy viewing
|
115 |
+
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number'])
|
116 |
+
df_fq.index.name = 'Class'
|
117 |
+
|
118 |
+
return img, df_fq
|
119 |
+
|
120 |
+
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence)
|
121 |
+
FRAME_WINDOW.image(img, channels='BGR')
|
122 |
+
|
123 |
+
# Updating Inference results
|
124 |
+
with st.container():
|
125 |
+
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True)
|
126 |
+
st.markdown("<h3>Detected objects in curret Frame</h3>", unsafe_allow_html=True)
|
127 |
+
st.dataframe(df_fq)
|
128 |
+
# print("π ~ df_fq:", df_fq)
|
129 |
+
|
130 |
+
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()]
|
131 |
+
|
132 |
+
print("π ~ list_of_tuples:", list_of_tuples)
|
133 |
+
|
134 |
+
speak(f'This is what I have found {list_of_tuples}')
|
135 |
+
|
136 |
+
# Video
|
137 |
+
if options == 'Video':
|
138 |
+
upload_video_file = st.sidebar.file_uploader(
|
139 |
+
'Upload Video', type=['mp4', 'avi', 'mkv'])
|
140 |
+
if upload_video_file is not None:
|
141 |
+
pred = st.checkbox(f'Predict Using {model_type}')
|
142 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
143 |
+
tfile.write(upload_video_file.read())
|
144 |
+
cap = cv2.VideoCapture(tfile.name)
|
145 |
+
|
146 |
+
while True:
|
147 |
+
success, img = cap.read()
|
148 |
+
if not success:
|
149 |
+
st.error(f"Video NOT working\nCheck Video settings!", icon="π¨")
|
150 |
+
break
|
151 |
+
|
152 |
+
if pred:
|
153 |
+
def predict(model, img, classes=[], conf=confidence):
|
154 |
+
if classes:
|
155 |
+
results = model.predict(img, classes=classes, conf=confidence)
|
156 |
+
else:
|
157 |
+
results = model.predict(img, conf=conf)
|
158 |
+
return results
|
159 |
+
|
160 |
+
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick):
|
161 |
+
results = predict(model, img, classes, conf=conf)
|
162 |
+
|
163 |
+
# Initialize a Counter to keep track of class occurrences
|
164 |
+
class_counts = Counter()
|
165 |
+
|
166 |
+
for result in results:
|
167 |
+
for box in result.boxes:
|
168 |
+
# Update the counter with the class name
|
169 |
+
class_name = result.names[int(box.cls[0])]
|
170 |
+
class_counts[class_name] += 1
|
171 |
+
|
172 |
+
# Draw the bounding box and label with a random color
|
173 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
174 |
+
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
|
175 |
+
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness)
|
176 |
+
cv2.putText(img, f"{class_name}",
|
177 |
+
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
|
178 |
+
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness)
|
179 |
+
|
180 |
+
# Convert the Counter to a DataFrame for easy viewing
|
181 |
+
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number'])
|
182 |
+
df_fq.index.name = 'Class'
|
183 |
+
|
184 |
+
return img, df_fq
|
185 |
+
|
186 |
+
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence)
|
187 |
+
FRAME_WINDOW.image(img, channels='BGR')
|
188 |
+
|
189 |
+
# Updating Inference results
|
190 |
+
with st.container():
|
191 |
+
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True)
|
192 |
+
st.markdown("<h3>Detected objects in current Frame</h3>", unsafe_allow_html=True)
|
193 |
+
st.dataframe(df_fq)
|
194 |
+
# print("π ~ df_fq:", df_fq)
|
195 |
+
|
196 |
+
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()]
|
197 |
+
|
198 |
+
print("π ~ list_of_tuples:", list_of_tuples)
|
199 |
+
|
200 |
+
# speak(f'This is what I have found {list_of_tuples}')
|
201 |
+
|
202 |
+
# Webcam
|
203 |
+
if options == 'Webcam':
|
204 |
+
cam_options = st.sidebar.selectbox('Select Webcam Channel', ('0', '1', '2', '3'))
|
205 |
+
|
206 |
+
if not cam_options == 'Select Channel':
|
207 |
+
pred = st.checkbox(f'Predict Using {model_type}')
|
208 |
+
cap = cv2.VideoCapture(int(cam_options))
|
209 |
+
|
210 |
+
while True:
|
211 |
+
success, img = cap.read()
|
212 |
+
if not success:
|
213 |
+
st.error(f"Webcam NOT working\nCheck Webcam settings!", icon="π¨")
|
214 |
+
break
|
215 |
+
|
216 |
+
if pred:
|
217 |
+
def predict(model, img, classes=[], conf=confidence):
|
218 |
+
if classes:
|
219 |
+
results = model.predict(img, classes=classes, conf=confidence)
|
220 |
+
else:
|
221 |
+
results = model.predict(img, conf=conf)
|
222 |
+
return results
|
223 |
+
|
224 |
+
def predict_and_detect(model, img, classes=[], conf=confidence, rectangle_thickness=draw_thick, text_scale=draw_thick, text_thickness=draw_thick):
|
225 |
+
results = predict(model, img, classes, conf=conf)
|
226 |
+
|
227 |
+
# Initialize a Counter to keep track of class occurrences
|
228 |
+
class_counts = Counter()
|
229 |
+
|
230 |
+
for result in results:
|
231 |
+
for box in result.boxes:
|
232 |
+
# Update the counter with the class name
|
233 |
+
class_name = result.names[int(box.cls[0])]
|
234 |
+
class_counts[class_name] += 1
|
235 |
+
|
236 |
+
# Draw the bounding box and label with a random color
|
237 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
238 |
+
cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),
|
239 |
+
(int(box.xyxy[0][2]), int(box.xyxy[0][3])), color, rectangle_thickness)
|
240 |
+
cv2.putText(img, f"{class_name}",
|
241 |
+
(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),
|
242 |
+
cv2.FONT_HERSHEY_PLAIN, text_scale, color, text_thickness)
|
243 |
+
|
244 |
+
# Convert the Counter to a DataFrame for easy viewing
|
245 |
+
df_fq = pd.DataFrame.from_dict(class_counts, orient='index', columns=['Number'])
|
246 |
+
df_fq.index.name = 'Class'
|
247 |
+
|
248 |
+
return img, df_fq
|
249 |
+
|
250 |
+
img, df_fq = predict_and_detect(model, img, classes=[], conf=confidence)
|
251 |
+
FRAME_WINDOW.image(img, channels='BGR')
|
252 |
+
|
253 |
+
# Updating Inference results
|
254 |
+
with st.container():
|
255 |
+
st.markdown("<h2>Inference Statistics</h2>", unsafe_allow_html=True)
|
256 |
+
st.markdown("<h3>Detected objects in current Frame</h3>", unsafe_allow_html=True)
|
257 |
+
st.dataframe(df_fq)
|
258 |
+
# print("π ~ df_fq:", df_fq)
|
259 |
+
|
260 |
+
list_of_tuples = [(row.Number, row.Index) for row in df_fq.itertuples()]
|
261 |
+
|
262 |
+
print("π ~ list_of_tuples:", list_of_tuples)
|
263 |
+
|
264 |
+
# speak(f'This is what I have found {list_of_tuples}')
|
265 |
+
|
266 |
+
|