import gradio as gr import requests import json def txt2img1(text): url = "https://stablediffusionapi.com/api/v3/text2img" payload = json.dumps({ "key": "qXpCKAkXLdKWb2sqcMlMzB0Q3gqHEggJIXxspJzHIVHUy6H9S060RN0BNGqj", "prompt": text, "negative_prompt": None, "width": "512", "height": "512", "samples": "1", "num_inference_steps": "20", "seed": None, "guidance_scale": 7.5, "safety_checker": "yes", "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings_model": "embeddings_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) response_dict = response.json() return response_dict['output'][0] def txt2txt(text): API_TOKEN = "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" API_URL = "https://api-inference.huggingface.co/models/gpt2" headers = {"Authorization": f"Bearer {API_TOKEN}"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({"inputs": text}) return output[0]['generated_text'] iface = gr.Interface(fn=txt2img1, inputs="text", outputs="image", title="Text to Image") iface.launch() iface2 = gr.Interface(fn=txt2txt, inputs="text", outputs="text", title="Text to Text") iface2.launch()