import gradio as gr import numpy as np import pandas as pd from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch target_list = ["Playful", "Infuriating", "Sentimental", "Cynical", "Depressing", "Awe-inspiring", "Patriotic", "Begrudging", "Educational", "Hopeful", "Sarcastic", "Disrespectful", "Disparaging"] device = torch.device('cuda' if torch.cuda.is_available() else 'CPU') model_name = "valurank/finetuned-distilbert-multi-label-emotion" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def get_probs(logits, threshold=0.5): sigm = 1 / (1 + np.exp(-logits)) return sigm def multi_label_emotions(text): inputs = tokenizer(text, return_tensors="pt", truncation=True) model.to(device) with torch.no_grad(): logits = model(**inputs).logits #probs = logits.int().numpy()[0] log_probs = get_probs(logits) final_log_probs = [] for log in log_probs: final_log_probs.append(log.numpy()) final_output = [] for i in zip(final_log_probs[0], target_list): final_output.append(i) final_output.sort(reverse=True) final_dict = {} for k,v in final_output: final_dict[v] = float(k) return final_dict demo = gr.Interface(multi_label_emotions, inputs=gr.Textbox(), outputs = gr.Label(num_top_classes=16), title="Multi-label-emotion-classification") if __name__ == "__main__": demo.launch(debug=True)