from sentence_transformers import SentenceTransformer, util import gradio as gr #Initializing the bert embedding model bert_model = SentenceTransformer('valurank/headline_similarities') #Defining a function to check for the similarities of the two headlines def similar_headline(headline_1, headline_2): headline_embedding_1 = bert_model.encode(headline_1) headline_embedding_2 = bert_model.encode(headline_2) bert_similarities = util.pytorch_cos_sim(headline_embedding_1, headline_embedding_2) similarities_percent = bert_similarities * 100 if bert_similarities > 0.6: result = f"similar: {similarities_percent[0][0]}" else: result = f"not similar: {similarities_percent[0][0]}" return result demo = gr.Interface(similar_headline, inputs=[gr.inputs.Textbox(label="Input the first headline here"), gr.inputs.Textbox(label="Input the second headline here")], outputs = "text", title="News Headline Similarities") #Launching the gradio app if __name__ == '__main__': demo.launch(debug=True)