abdulmatinomotoso's picture
Update app.py
693cebb verified
from sentence_transformers import SentenceTransformer, util
import gradio as gr
#Initializing the bert embedding model
bert_model = SentenceTransformer('all-MiniLM-L6-v2')
#Defining a function to check for the similarities of the two headlines
def similar_headline(headline_1, headline_2):
headline_embedding_1 = bert_model.encode(headline_1)
headline_embedding_2 = bert_model.encode(headline_2)
bert_similarities = util.pytorch_cos_sim(headline_embedding_1, headline_embedding_2)
similarities_percent = bert_similarities * 100
if bert_similarities > 0.7:
result = f"similar: {similarities_percent[0][0]}"
else:
result = f"not similar: {similarities_percent[0][0]}"
return result
demo = gr.Interface(similar_headline, inputs=[gr.Textbox(label="Input the first headline here"),
gr.Textbox(label="Input the second headline here")],
outputs = "text",
title="News Headline Similarities")
#Launching the gradio app
if __name__ == '__main__':
demo.launch(debug=True)