import spacy import spacy_transformers import gradio as gr nlp = spacy.load("en_core_web_trf") examples = [ "Does Chicago have any stores and does Joe live here?", ] def ner(text): doc = nlp(text) final_output = [] flagged_categories = ['CARDINAL', 'DATE', 'MONEY', 'PERCENT', 'QUANTITY', 'TIME', 'ORDINAL'] for ent in doc.ents: label = ent.label_ if label not in flagged_categories: output = {'entity': ent.label_, 'word': ent.text, 'start': int(ent.start_char), 'end': int(ent.end_char)} final_output.append(output) return {"text": text, "entities": final_output} demo = gr.Interface(ner, gr.Textbox(placeholder="Enter sentence here..."), gr.HighlightedText(), examples=examples) if __name__ == '__main__': demo.launch(debug=True)