File size: 2,221 Bytes
b69d9b2
 
 
 
c9a2e1a
b69d9b2
 
c9a2e1a
b69d9b2
 
c9a2e1a
b69d9b2
 
c9a2e1a
 
b69d9b2
e96727a
 
b69d9b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471b76d
 
b69d9b2
c9a2e1a
b69d9b2
 
471b76d
 
 
e79d3d5
471b76d
 
e79d3d5
 
 
b69d9b2
 
4de6955
b69d9b2
98090f0
b69d9b2
e96727a
fe4994f
b69d9b2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#importing the necessary libraries
import re
import nltk
from nltk.tokenize import sent_tokenize
nltk.download("punkt")
import gradio as gr


# Defining a function to read in the text file
def read_in_text(url):
  with open(URL, "r") as file:
    article = file.read()
    return article

      
#Doing some text preprocessing, more will still be needed later
def clean_text(text):
  #text = read_in_text(url)
  text = text.encode("ascii", errors="ignore").decode(
        "ascii"
    )  # remove non-ascii, Chinese characters
    
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = text.strip(" ")
  text = re.sub(
        " +", " ", text
    ).strip()  # get rid of multiple spaces and replace with a single
  return text
  
#importing the model and tokenizer for the headline generator
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
)

#initializing the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained("valurank/final_headline_generator")
model = AutoModelForSeq2SeqLM.from_pretrained("valurank/final_headline_generator")


#Defining a function to generate the headlines
def headline_generator_2(file):
  input_text = file
  #input_text = sent_tokenize(input_text)
  #text = ''.join(input_text[:6])
  
  inputs = tokenizer(input_text,truncation=True, return_tensors="pt")
  summary_ids = model.generate(inputs["input_ids"],min_length=20, max_length=40)
  summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
  
  return summary
  
#creating an interface for the headline generator using gradio
demo = gr.Interface(headline_generator_2, inputs=[gr.Textbox(label="Drop your .txt file here")],
                                          title = "HEADLINE GENERATOR",
                                          outputs=[gr.Textbox(label="Headline")],
                                          theme= "darkhuggingface")

                                                                                                                                                                      
#launching the app
if __name__ == "__main__":
    demo.launch(debug=True)