File size: 2,255 Bytes
b69d9b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c4e6d4
 
 
b69d9b2
 
 
 
 
 
 
626a615
b69d9b2
 
 
3e83100
b69d9b2
 
 
 
 
489b827
b69d9b2
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#importing the necessary libraries

import re
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import gradio as gr
from gradio.mix import Parallel

# Defining a function to read in the text file
def read_in_text(url):
  with open(url, 'r') as file:
    article = file.read()
    return article
    
#Doing some text preprocessing, more will still be needed later
def clean_text(url):
  text = read_in_text(url)
  text = text.encode("ascii", errors="ignore").decode(
        "ascii"
    )  # remove non-ascii, Chinese characters
    
  text = re.sub(r"\n", " ", text)
  text = re.sub(r"\n\n", " ", text)
  text = re.sub(r"\t", " ", text)
  text = text.strip(" ")
  text = re.sub(
        " +", " ", text
    ).strip()  # get rid of multiple spaces and replace with a single
  return text
  
#importing the model and tokenizer for the headline generator
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
)

#initializing the tokenizer and the model
model_type_2 ="valurank/pegasus-multi_news-headline"
tokenizer_2 = AutoTokenizer.from_pretrained(model_type_2, use_auth_token='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')
model_2 = AutoModelForSeq2SeqLM.from_pretrained(model_type_2, use_auth_token='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')

#Defining a function to generate the headlines
def headline_generator_2(file):
  input_text = clean_text(file.name)

  with tokenizer_2.as_target_tokenizer():
        batch = tokenizer_2(
            input_text, truncation=True, padding="longest", return_tensors="pt"
        )

  translated = model_2.generate(**batch)
  summary_2 = tokenizer_2.batch_decode(translated, skip_special_tokens=True, max_length=50)
  return summary_2[0]
  
#creating an interface for the headline generator using gradio
demo = gr.Interface(headline_generator_2, inputs=[gr.inputs.File(label="Drop your .txt file here", optional=False)],
                                          title = "HEADLINE GENERATOR",
                                          outputs=[gr.outputs.Textbox(label="Headline")],
                                          theme= "darkhuggingface")
                                          
#launching the app
if __name__ == "__main__":
    demo.launch(debug=True)