#importing the necessary library import re import nltk import torch import numpy as np import gradio as gr from nltk.tokenize import sent_tokenize from transformers import pipeline nltk.download("punkt") #initailizing the model pipeline from transformers import BartTokenizer, BartForConditionalGeneration model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") # Defining a function to read in the text file def read_in_text(url): with open(url, "r") as file: article = file.read() return article #Defining a function to get the summary of the article def final_summary(file): #reading in the text and tokenizing it into sentence text = read_in_text(file.name) chunks = sent_tokenize(text) output = [] #looping through the sentences in a batch of 10 and summarizing them for i in range(0,len(chunks), 10): sentence = ' '.join(chunks[i:i+10]) inputs = tokenizer(sentence, max_length=1024, return_tensors="pt") summary_ids = model.generate(inputs["input_ids"]) summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] output.append(summary) #joining all the summary output together summary = " ".join(output) lines1 = sent_tokenize(summary) for i in range(len(lines1)): lines1[i] = "* " + lines1[i].strip().replace(" .", ".") summ_bullet1 = "\n".join(lines1) return summ_bullet1 #creating an interface for the headline generator using gradio demo = gr.Interface(final_summary, inputs=[gr.File(label="Drop your .txt file here")], title = "ARTICLE SUMMARIZER", outputs=[gr.Textbox(label="Summary")], theme= "darkhuggingface") #launching the app if __name__ == "__main__": demo.launch(debug=True)