abdulmatinomotoso
commited on
Commit
•
f4e5c3c
1
Parent(s):
f7a0f35
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#importing the necessary library
|
2 |
+
import re
|
3 |
+
import nltk
|
4 |
+
import torch
|
5 |
+
from nltk.tokenize import sent_tokenize
|
6 |
+
nltk.download('punkt')
|
7 |
+
from IPython.display import HTML, display
|
8 |
+
import gradio as gr
|
9 |
+
from gradio.mix import Parallel
|
10 |
+
from transformers import pipeline
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
# Defining a function to read in the text file
|
14 |
+
def read_in_text(url):
|
15 |
+
with open(url, 'r') as file:
|
16 |
+
article = file.read()
|
17 |
+
return article
|
18 |
+
|
19 |
+
#initailizing the model pipeline
|
20 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
21 |
+
|
22 |
+
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
23 |
+
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
24 |
+
|
25 |
+
#Defining a function to get the summary of the article
|
26 |
+
def final_summary(file):
|
27 |
+
#reading in the text and tokenizing it into sentence
|
28 |
+
text = read_in_text(file.name)
|
29 |
+
chunks = sent_tokenize(text)
|
30 |
+
output = []
|
31 |
+
|
32 |
+
#looping through the sentences in a batch of 10 and summarizing them
|
33 |
+
for i in range(0,len(chunks), 20):
|
34 |
+
sentence = ' '.join(chunks[i:i+20])
|
35 |
+
inputs = tokenizer(sentence, max_length=1024, return_tensors="pt")
|
36 |
+
summary_ids = model.generate(inputs["input_ids"])
|
37 |
+
summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
38 |
+
output.append(summary)
|
39 |
+
|
40 |
+
#joining all the summary output together
|
41 |
+
summary = ' '.join(output)
|
42 |
+
lines1 = sent_tokenize(summary)
|
43 |
+
for i in range(len(lines1)):
|
44 |
+
lines1[i] = "* " + lines1[i].strip().replace(' .', '.')
|
45 |
+
|
46 |
+
summ_bullet1 = "\n".join(lines1)
|
47 |
+
return summ_bullet1
|
48 |
+
|
49 |
+
#creating an interface for the headline generator using gradio
|
50 |
+
demo = gr.Interface(final_summary, inputs=[gr.inputs.File(label="Drop your .txt file here", optional=False)],
|
51 |
+
title = "ARTICLE SUMMARIZER",
|
52 |
+
outputs=[gr.outputs.Textbox(label="Summary")],
|
53 |
+
theme= "darkhuggingface")
|
54 |
+
|
55 |
+
#launching the app
|
56 |
+
if __name__ == "__main__":
|
57 |
+
demo.launch(debug=True)
|