abdulmatinomotoso commited on
Commit
f4e5c3c
1 Parent(s): f7a0f35

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -0
app.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #importing the necessary library
2
+ import re
3
+ import nltk
4
+ import torch
5
+ from nltk.tokenize import sent_tokenize
6
+ nltk.download('punkt')
7
+ from IPython.display import HTML, display
8
+ import gradio as gr
9
+ from gradio.mix import Parallel
10
+ from transformers import pipeline
11
+ import numpy as np
12
+
13
+ # Defining a function to read in the text file
14
+ def read_in_text(url):
15
+ with open(url, 'r') as file:
16
+ article = file.read()
17
+ return article
18
+
19
+ #initailizing the model pipeline
20
+ from transformers import BartTokenizer, BartForConditionalGeneration
21
+
22
+ model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
23
+ tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
24
+
25
+ #Defining a function to get the summary of the article
26
+ def final_summary(file):
27
+ #reading in the text and tokenizing it into sentence
28
+ text = read_in_text(file.name)
29
+ chunks = sent_tokenize(text)
30
+ output = []
31
+
32
+ #looping through the sentences in a batch of 10 and summarizing them
33
+ for i in range(0,len(chunks), 20):
34
+ sentence = ' '.join(chunks[i:i+20])
35
+ inputs = tokenizer(sentence, max_length=1024, return_tensors="pt")
36
+ summary_ids = model.generate(inputs["input_ids"])
37
+ summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
38
+ output.append(summary)
39
+
40
+ #joining all the summary output together
41
+ summary = ' '.join(output)
42
+ lines1 = sent_tokenize(summary)
43
+ for i in range(len(lines1)):
44
+ lines1[i] = "* " + lines1[i].strip().replace(' .', '.')
45
+
46
+ summ_bullet1 = "\n".join(lines1)
47
+ return summ_bullet1
48
+
49
+ #creating an interface for the headline generator using gradio
50
+ demo = gr.Interface(final_summary, inputs=[gr.inputs.File(label="Drop your .txt file here", optional=False)],
51
+ title = "ARTICLE SUMMARIZER",
52
+ outputs=[gr.outputs.Textbox(label="Summary")],
53
+ theme= "darkhuggingface")
54
+
55
+ #launching the app
56
+ if __name__ == "__main__":
57
+ demo.launch(debug=True)